
Three Algorithms for Cholesky Factorization on
Distributed Memory using Packed Storage

Fred G. Gustavson1,2, Lars Karlsson2, and Bo Kågström2

1 IBM’s T. J. Watson Research Center,
Yorktown Heights, NY 10598, USA, fg2@us.ibm.com

2 Department of Computing Science and HPC2N, Umeå University,
S-901 87 Umeå, Sweden, {larsk, bokg}@cs.umu.se

Abstract. We present three algorithms for Cholesky factorization using
minimum block storage for a distributed memory (DM) environment.
One of the distributed square blocked packed (SBP) format algorithms
performs similar to ScaLAPACK PDPOTRF, and with iteration overlapping
outperforms it by as much as 67%. By storing the blocks in a standard
contiguous way, we get better performing BLAS operations. Our DM
algorithms are almost insensitive to memory hierarchy effects and thus
gives smooth and predictable performance. We investigate the intricacies
of using RFP format in a DM ScaLAPACK environment and point out
some advantages and drawbacks.

1 Near Minimal Storage in a Serial Environment

Rectangular full packed (RFP) format is a standard full storage two-dimensional
array for triangular or symmetric matrices requiring minimum storage [3]. For
the lower triangular case, blocks A11, A21, A

T
22 are stored as submatrices in a

rectangular full storage array. This allows for using level 3 BLAS as well as
making it easy to write LAPACK-style code for this format [3].

SBP format is a generalization of standard full storage. The matrix is par-
titioned into square blocks of order NB, and in the case of storing symmetric or
triangular matrices, only the triangular blocks are stored. Each square block is
contiguous in memory; the blocks are either stored row or column-wise. Each
square diagonal block wastes NB(NB-1)/2 elements, a total of N(NB-1)/2 ele-
ments summed over all N/NB diagonal blocks. Each square block will map into
L1 cache in an optimal way resulting in efficient BLAS operations.

2 Minimum Block Storage in a Distributed Environment

The current industry standard for distributed memory computing views the pro-
cessors as a PxQ mesh and uses a 2D Block Cyclic Layout (BCL) of full format
arrays. This has proven to be a good choice for achieving effective load balanc-
ing. However, this wastes about half the storage for triangular and symmetric
matrices. There is currently no industry standard for packed storage. The SBP
storage of Section 1 is a possibility.

2

2.1 Two Distributed RFP Algorithms for Cholesky Factorization

Both algorithms use the RFP layout [3]. One of these, due to lack of space, we
do not discuss; see [3]. The other, a ScaLAPACK type algorithm, has the same
form as one of the four RFP LAPACK algorithms in [3]. However, ScaLAPACK
does not support SBP format. Nonetheless, RFP format can be distributed in
a BCL and hence ScaLAPACK codes can be successfully used on it. This pro-
vides code reuse and portability. However, PDPOTRF and PBLAS have alignment
restrictions. We found two solutions around this: runtime realignment or using
more memory to store the misaligned submatrices. We have implemented one
variant and experienced bad performance. We found two sources for this: more
communication stages and less efficient BLAS operations on the nodes.

2.2 A Distributed SBP Algorithm for Cholesky Factorization

The square blocks in SBP can be considered atomic units. By using a BCL with
blocking parameter NB, the square blocks are assigned to the mesh of proces-
sors. Instead of storing all blocks, we only store the triangular blocks, resulting
in minimum block storage. Each block column is stored contiguously in local
memory and we introduce a column pointer (CP) array that describes where
each block column starts in the one dimensional array of local blocks. This CP
array enables efficient referencing of the local blocks. Since each block is stored

SBP Storage
Logical view

CP(0)

CP(1)

CP(2)

SBP Storage
Physical viewFull storage

Global symmetric
or triangular matrix

Globally On processor p(0, 0)

 = Wasted

Fig. 1. Illustration of how an order 7 block global matrix is laid out on a 2 × 3 mesh
in SBP format and addressed with its column pointer (CP) array.

contiguously BLAS operations involving them will achieve very good perfor-
mance [3]. We show how right looking Cholesky factorization can be viewed as
a series of pivot panel factorizations and Schur complement updates (SCUs).
The SCU stage of each iteration requires row and column broadcasts of the as-
sociated pivot panel [3]. We show how this can be performed in two ways. The
first approach is similar to ScaLAPACK Cholesky factorization and consists of a

3

series of computation and communication stages, resulting in a great deal of idle
time because panel factorization only involves one panel of one process column.

By observing that panel factorization can be performed prior to the comple-
tion of the previous SCU stage, it is possible to overlap the factorization of the
next panel by the SCU update of the current panel; see reference [1] of [3]. This
approach is an extension to the algorithm presented in 1993 by Dackland et al
[4] to a 2D BCL. We verify with execution tracing that the idle time caused
by panel factorization is eliminated, and we present performance measurements
suggesting a 11− 67% increase in MFLOPs for matrix orders up to 30000 com-
pared with ScaLAPACK PDPOTRF. The increase in performance diminishes with
increasing problem size since the asymptotically dominant operation is the SCU.
Figure 2 illustrates how two sets of border vectors holding pivot panels can be

S i+1
 i

i i+1

W

S
 i
 i+1

W

i i+1

Panel i+1

Process to the right of Panel i+1Process owning Panel i+1

Fig. 2. Data layout for the SBP with double sets of W and S border vectors.

used to perform SCU i whilst at the same time performing a communication
algorithm on the panel for iteration i + 1.

Experiments confirm that performance is smooth without spikes due to mem-
ory hierarchy effects. This is in contrast to the ScaLAPACK algorithm in which
these effects are due to bad choices of local leading dimension. Table 1 shows

Table 1. Execution time for PDPOTRF and the SBP algorithm with iteration overlap
for various square grid sizes.

N 2x2 3x3 4x4 5x5 6x6 7x7
4000 2.13/0.86 1.48/0.63 1.04/0.66 0.79/0.68 0.63/0.64 0.57/0.65
8000 14.80/0.92 8.29/0.80 5.33/0.79 3.97/0.77 3.15/0.71 2.64/0.73

12000 25.20/0.83 16.30/0.80 10.90/0.84 8.27/0.80 7.11/0.78
16000 57.30/0.84 34.50/0.85 24.00/0.85 18.30/0.80 13.90/0.85
20000 65.00/0.85 43.90/0.86 33.00/0.81 25.90/0.84
24000 53.90/0.84 42.30/0.85

selected times for both PDPOTRF and the algorithm using SBP and iteration
overlapping. Each cell has the form X/y, where X is the time (in seconds) of the
PDPOTRF routine and y = Y/X, where Y is the time for the SBP algorithm.

4

3 Related Work on DM Cholesky Factorization

We briefly discuss other packed storage schemes for DM environments. D’Azevedo
and Dongarra suggested in 1997 a 1D storage scheme where each block column
is stored in standard format [1] Benefits include code reuse and ease of use via
PBLAS and ScaLAPACK routines. However, some new PBLAS routines seem to
be required to handle the packed storage [1]. Furthermore, their results indicate
that the performance varies wildly with input, making performance extrapola-
tion difficult.

Recently, Marc Baboulin et al. presented a storage scheme which uses rel-
atively large square blocks consisting of at least LCM(p, q) elementary blocks
[2]. This format also supports code reuse via PBLAS and ScaLAPACK. The
granularity is limited to the distributed block size, which means less possibility
to save memory. For the Cholesky factorization routines, the chosen block sizes
for performance measurements were between 1024 and 10240. This resulted in a
departure from their minimal storage by as much as 7–13%. Using their minimal
allowed distributed block size would bring this percentage down to about 1–3%.
Our algorithms use the minimum block storage.

4 Conclusions

We have studied two algorithms and data formats for minimal block storage in
distributed memory environments using a 2D block cyclic data layout.

In a serial environment, the RFP format is an attractive choice. However,
combined with a ScaLAPACK layout, we have identified and shown a number
of problems and weaknesses.

The SBP format was implemented and tested with two algorithm variants.
One resembles ScaLAPACK’s PDPOTRF but makes no use of PBLAS or ScaLA-
PACK routines, and one which overlaps iterations. We have demonstrated that
performance at least as good as the ScaLAPACK algorithm is attainable, and
for the overlapping variant achieving far better performance, especially for small
and medium-sized matrices.

References
1. D’Azevedo, E., Dongarra, J.: Packed Storage Extension for ScaLAPACK. Technical

Report, Oak Ridge National Laboratory (1997).
2. Baboulin, M., Giraud, L., Gratton, S., Langou, J.: A Distributed Packed Storage

for Large Parallel Calculations. Technical Report, CERFACS (2005).
3. Gustavson, F.: New Generalized Data Structures for Matrices Lead to a Variety of

High Performance Dense Linear Algebra Algorithms. In J. Dongarra, K. Madsen,
and J. Wasniewski (editors), PARA 2004, Applied Parallel Computing, State of the
Art in Scientific Computing, LNCS 3732, 2006, pp 11–20.

4. Dackland, K., Elmroth, E., Kågström, B.: A Ring–Oriented Approach for Block
Matrix Factorizations on Shared and Distributed Memory Architectures. In R.F.
Sincovec et al (editors), Proc. Sixth SIAM Conf. on Parallel Processing for Scientific
Computing, SIAM Publications, 1993, pp 330–338.

