
Automatic and Transparent Optimization of an
Application’s MPI Communication

Thorvald Natvig and Anne C. Elster

Norwegian University of Science and Technology, Sem Sælands vei 7-9, NO-7491
Trondheim, NORWAY,
thorvan@idi.ntnu.no,

WWW home page: http://www.idi.ntnu.no/ ~thorvan/

Abstract. HPC users frequently develop and run their MPI programs
without optimizing communication, leading to poor performance on the
cheaper clusters. Unfortunately, optimizing communication patterns will
often decrease the clearness and ease of modification of the code, and
users desire to focus on the application problem and not the tool used
to solve it.
To this end, we present a new method for automatically optimizing any
application’s communication. By protecting the memory associated with
MPI requests, we can let the request continue in the background as
MPI Isend or MPI Irecv while the application is allowed to continue in
the belief the request is finished. Once the data is accessed by the appli-
cation, our protection will ensure we wait for the background transfer to
finish before allowing the application to continue.
We have observed performance close to that of manual optimization on
our testcases when run on normal clusters.

1 Introduction

This paper describes our method for automatic optimization of MPI [1] appli-
cations.

The specific task we have chosen to focus on is turning synchronous sends
(send and wait for completion) into asynchronous sends (start sending in the
background). While it sounds easy, it’s not just a matter of replacing the syn-
chronous sends with asynchronous ones. What happens if the original code first
received into a buffer and then performed computation on this data? If the re-
ception is started in the background, the data will not have arrived by the time
computation starts, and hence the results will be wrong.

A more detailed description of the implementation and benchmarking may
be found in [2].

1.1 Previous work

Faraj and Yuan [3] have presented such a method for automatically optimizing
the MPI Collective subroutines, and Østvold has presented numerous ways of
timing collective communication [4].
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Ogawa and Matsuoka [5] use compiler modifications to optimize MPI. The
compiler will recognize the MPI calls in a program, do a static analysis to find
out what arguments are static and then create specialized MPI functions for
that program. With the introduction of interprocedural optimizations such as is
available in the Intel C++ Compiler [6], such optimizations can be extended to
all function calls and not just MPI Calls.

2 Design and Implementation

As it was a design goal that the users should not have to change their code
when using this new method, the first challenge was placing ourselves between
the application and MPI. Our implementation therefore allows for two modes of
program injection: Runtime (which works only if MPI is dynamically linked) or
compile time (which works by overriding mpi.h).

2.1 Marking memory

When a overridden synchronous MPI function is called and turned into an asyn-
chronous one, we need to track the memory area in use. When a pagefault occurs,
we need to know what request we should wait for, and more importantly we need
to make sure we don’t have two active requests to the same memory area. Al-
lowing two write requests to the same addresses would violate the dataflow of
the program.

There are two problems in tracking memory. Overlapping elements and over-
lapping pages. Overlapping elements deals with two requests needing to access
the exact same memory location, while overlapping pages deal with two requests
needing access to the same page.

Figure 1 shows a theoretical example of all the requests for a classic Jacobi
PDE solver with a 8x8 local grid, 1 layer of shadow cells, and a theoretical page
size of 128 bytes. Each row represents one page in memory, and each color is a
separate request, with bright colors being sends and dark colors being receives.
No receive requests have overlapping elements, but the sends do for the corners.
Additionally, the only requests that do not share pages are the ones for the top
and bottom.

Fig. 1. Left: Memory cells used by border exchange in Jacobi PDE Solver. Right: Cells
shown in structured form.
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Our implementation accurately handles both requests with overlapping ele-
ments and requests with overlapping pages (but no overlapping or shared ele-
ments), as a simple ’if page is used, then wait’ approach yielded no performance
increases.

2.2 Chains of requests

A chain of requests is any phase of the program that is pure communication. For
example, in our Red-Black SOR PDE Solver, the exchange of red borders is a
chain of requests.

By recognizing such chains, and the knowledge that the majority of commu-
nication improvements are in communicating with multiple neighbors simulta-
neously, we can avoid the overhead of page protection by allowing the requests
to start background transmission and wait for all outstanding requests at the
end.

It is important that chains be remembered, as it’s only once we have great
confidence that a chain is identical for every iteration that we can perform this
trick; otherwise the ”end of chain” might never happen and the program might
read or write unavailable data.

Our implementation generates a signature of all MPI calls, and once a series
of specific signatures have been observed repeatedly, this is treated as part of
a inner loop. No memory protection will be done, and we instead wait for all
communication to finish at the last request in the chain.

3 Experiments and Results

We have implemented a Red-Black SOR 2D PDE Solver as it’s a good repre-
sentation of 2D communication patterns. Additionally, it’s alternating red and
black cells stresses our method by forcing it to operate under less-than-ideal
conditions.

We have 3 versions implemented. The first version simply uses MPI Sendrecv
of the 4 borders on each red or black phase of each iteration. The second ver-
sion starts sending and receiving all 4 borders in parallel using MPI Isend and
MPI Irecv. The final version is optimized even further by first computing the up-
dated boundary cells, then exchanging those in the background while computing
interior cells.

These 3 versions are then compared with the automatically tuned program
(using just MPI Sendrecv).

We ran these benchmarks on numerous machines, and presented here are the
numbers from our cluster (3.4 Ghz Pentium 4 with Gigabit Ethernet).

4 Conclusion

We have implemented, tested and verified a method for automatic runtime op-
timization of communication patterns. Our method requires little or no user
intervention and, with paging only, cannot break data flow.
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Method n = 128 n = 256 n = 512 n = 1024 n = 2048 n = 4096

MPI Sendrecv 1.14 3.01 3.01 3.49 6.05 16.98
MPI Isend 0.36 0.99 1.00 1.97 4.48 14.09
Full overlap 0.35 0.99 1.00 1.15 3.87 13.84
Paging 0.92 1.13 1.32 2.94 6.34 22.01
Chaining 0.43 1.07 1.06 2.04 4.55 14.17

Table 1. Average iteration execution time in milliseconds of automatically optimized
program compared to manually optimized on 16 nodes on a cluster.

It is fully transparent, so a system administrator might install the static
injection as part of the mpicc system, and users would not notice anything but
a small speedup of their programs.

The improvements make normal applications based on MPI Sendrecv rival
those written with MPI Isend. This allows users to think and write using simple
communication patterns which leads to greater productivity and faster appli-
cation development or them, and it lets us focus on the optimization part at
runtime. We hope this focus on optimizing ”average” applications is something
we can inspire others to follow.
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