
High-level User Interfaces for the DOE ACTS
Collection

L.A. Drummond1, Vicente Galiano2, Violeta Migallón3, and José Penadés3

1 Lawrence Berkeley National Laboratory,
One Cyclotron Road, Berkeley CA 94703, United States of America

LADrummond@lbl.gov
2 Departamento de F́ısica y Arquitectura de Computadores,
Universidad Miguel Hernández, 03202 Elche, Alicante, Spain

vgaliano@umh.es
3 Departamento de Ciencia de la Computación e Inteligencia Artificial,

Universidad de Alicante, E-03071 Alicante, Spain
{violeta, jpenades}@dccia.ua.es

Abstract. The ACTS collection project comprises a set of state of the
art software tools to speed up the development of High-Performance
Computing Applications in science and engineering. Here we look at the
development of High Level user interfaces using scripting languages like
Python, to facilitate the access to ACTS technology to a wide community
of computational scientists. PyACTS is our main project here, but we
also visit other efforts between the community of developers of ACTS
tools.

1 Introduction to the ACTS Collection and PyACTS

The Advanced CompuTational Software (ACTS) [1] Collection comprises a set of
computational tools developed primarily at DOE laboratories, sometimes in col-
laboration with universities and other funding agencies (NSF, DARPA), aimed
at simplifying the solution of common and important computational problems.
A number of important scientific problems have been successfully studied and
solved by means computer simulations built on top of tools available in the
ACTS Collection [2]. The ACTS Collection brings robust and high-end software
tools to the hands of application developers to accelerate the development of
computational science codes and consequent results. However, this transfer of
technology is not always successful due in part to the intricacy in understanding
the interfaces associated with the software tools and the time an application
scientists spends installing and learning the use of a given tool. PyACTS [3–5]
provides a didactical user interface to assist with their first application proto-
type and following production code development. Here we look at the PyACTS
development project and existing functionalities.

We begin with brief descriptions of the ACTS tools for which have been
building a PyACTS, and also other ACTS tools that already provide Python
Interfaces. The reader is refer to the ACTS Information Center [6] for more
details on these tools and others available in the collection.



2 L. A. Drummond et al.

2 Some of The Tools in the ACTS Collection

ScaLAPACK [7] is a library of high-performance linear algebra routines for
distributed-memory message-passing Multiple Instruction Multiple Data (MIMD)
computers and networks of workstations. The ScaLAPACK library contains rou-
tines for solving systems of linear equations, least squares, eigenvalue problems
and singular value problems. It also contains routines that handle many compu-
tations related to those, such as matrix factorizations or estimation of condition
numbers.
SuperLU [8] is a general purpose library for the direct solution of large, sparse,
nonsymmetric systems of linear equations on high performance machines. The
library is written in C and is callable from either C or Fortran. The library
routines perform an LU decomposition with numerical pivoting and triangular
system solves through forward and back substitution. The LU factorization rou-
tines can handle non-square matrices but the triangular solves are performed
only for square matrices.
PETSc The Portable, Extensible Toolkit for Scientific computation [9], pro-
vides sets of tools for the parallel, as well as serial, numerical solution of PDEs
that require solving large-scale, sparse linear and nonlinear systems of equations.
PETSc includes nonlinear and linear equation solvers that employ a variety of
Newton techniques and Krylov subspace methods. PETSc provides several par-
allel sparse matrix formats, including compressed row, block compressed row,
and block diagonal storage.
SUNDIALS (SUite of Nonlinear and DIfferential/ALgebraic equation Solvers)
refers to a family of four closely related solvers; CVODE [10, 11], for systems of
ordinary differential equations; CVODES [12], variant of CVODE for sensitivity
analysis; KINSOL [13], for systems of nonlinear algebraic equations; and IDA
[14], for systems of differential-algebraic equations.
These solvers have some code modules in common, primarily a module of vector
kernels and generic linear system solvers, including one based on a Scaled Pre-
conditioned GMRES method. All of the solvers are suitable for either serial or
parallel environments. All message passing calls are made through MPI.
Trilinos [15] is a framework for the development of parallel solvers and libraries
within an object-oriented environment. AztecOO is one of the libraries available
in Trilinos and it is part of the ACTS Collection. The Trilinos framework offers
a variety of mechanisms for a software package to interact with other software
packages. Trilinos includes a large set of functional libraries and packages that
including AztecOO they provide numerical functionalities and support for the
solution of large-scale, complex multi-physics engineering and scientific applica-
tions.
TAU - Tuning and Analysis Utilities [16] is a toolkit for performance anal-
ysis of parallel programs written in C, C++, Java and Python. The main ad-
vantage of this toolkit is that it is portable to many computer platforms offering
portability when tracing the performance of given code. TAU basically gath-
ers performance information through manual or automatic instrumentation of
functions, basic coding blocks, methods, statements, or full programs. The au-



PyACTS 3

tomatic instrumentation is implemented via an automatic instrumentation gen-
erator called Program Database Toolkit (PDT). TAU provides a visualization
tool to view the outpput from the traces. It can also generate tracer data to be
used other third party visualization programs like Vampir, Paraver or JumShot.

3 PyACTS: A Python Interface to The ACTS Collection

Python [17] is an interpreted, interactive, object-oriented programming lan-
guage. Python combines remarkable power with very clear syntax. It has mod-
ules, classes, exceptions, very high level dynamic data types, and dynamic typing.
New built-in modules are easily written in C or C++. Python is also usable as an
extension language for applications that need a programmable interface. Python
is designed to make integration with other software components in a system
as simple as possible. Programs written in Python can be easily blended with
other languages. For instance, Python scripts can call out existing C and C++
libraries, Java classes, and much more. Actually, it is this feature of Python that
is employed in our current work.

Additionally, Python is portable: it runs on many brands of UNIX, on Win-
dows, Mac, and many other platforms. Python is copyrighted but freely usable
and distributable, even for commercial use. Python is an ideal language for proto-
type development and other ad–hoc programming tasks, without compromising
maintainability and it uses an elegant syntax for readable programs. All of the
ACTS tools listed in the previous section use MPI as one of the methods for
supporting message passing. In the PyACTS, we use PyMPI, which enables us
to use the same Python modules and rich functionality.

Currently, we have developed an interface to ScaLAPACK and SuperLU,
PyScaLAPACK [3] and PySuperLU, respectively, and have used a design im-
plementation of PyACTS as shown in Figure 1. This design allows for easily
handling of different versions of the same package and also the interoperability
with other Python interfaces from other ACTS tool developers. For instance,
PETSc and SUNDIALS provide their own python extensions. Trilinos provides
PyTrilinos [18] which uses Epetra, Trilinos basic data object class, extensions to
provide access to the full Trilinos functionality. TAU can also profile programs
written in Python. Thus, the python structure depicted in Figure 1, still allows
for integration of existing PyACTS functionality with the ones being developed
by other ACTS tool developers.

4 Conclusions and Future Work

Although the overhead of the interface in the examples run is not significant,
PyACTS is not yet intended for large production runs in high-end system, rather
it is a didactical tool for generating a first prototype of the application code. It
helps the user to become familiar with a particular interface and also access in
an interoperable manner other ACTS tools interface without having to learn it.



4 L. A. Drummond et al.

Fig. 1. Design of the PyACTS Interface.

We are currently working on a PyACTS scribe that allow to write out the for-
tran and C language equivalent functions of the High-Level PyACTS routines.
Therefore, a user that prototypes an application using PyACTS will be able to
get the exact fortran or C calling interface sequence in order to produced a code
that can be compiled and use for production runs in a large number of system.
In the future, we will be working closely with other ACTS tool developers and
integrating more functionality to PyACTS.

References

1. Drummond, L.A., Marques, O.A.: An overview of the Advanced CompuTational
Software (ACTS) Collection. ACM Transactions on Mathematical Software 31
(2005) 282–301

2. Drummond, L., Hernandez, V., Marques, O., Roman, J., Vidal, V.: A Survey of
High-Quality Computational Libraries and Their Impact in Science and Engineer-
ing Applications. In: Lecture Notes in Computer Science. Volume 3403., Valencia,
Spain, Springer-Verlag (2005) 37–50

3. Galiano, V., Drummond, L.A., Migallón, V., Penadés, J.: High Level User Inter-
faces for High Performance Libraries in Linear Algebra: PyBLACS and PyPBLAS.
In: Proceedings from 12th International Linear Algebra Society Conference, Uni-
versity of Regina,Regina, Saskatchewan, Canada (2005)

4. Drummond, L.A., Galiano, V., Migallón, V., Penadés, J.: Improving ease of use in
BLACS and PBLAS with Python. In: Proceedings from Parallel Computing 2005
(ParCo 2005), Malaga, Spain (2005)

5. Kang, N., Drummond, L.A.: A first prototype of PyACTS. Technical Report
LBNL-53849, Lawrence Berkeley National Laboratory (2003)

6. Marques, O.A., Drummond, L.A.: The ACTS Information Center.
http://acts.nersc.gov (2001)



PyACTS 5

7. Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J.W., Dhillon, I.,
Dongarra, J.J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D.,
Whaley, R.C.: ScaLAPACK User’s Guide. SIAM, Philadelphia, Pennsylvania
(1997)

8. Demmel, J.W., Gilbert, J.R., Li, X.: SuperLU User’s Guide. University of Cali-
fornia, Berkeley. (2003)

9. Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of
parallelism in object oriented numerical software libraries. In Arge, E., Bruaset,
A.M., Langtangen, H.P., eds.: Modern Software Tools in Scientific Computing,
Birkhauser Press (1997) 163–202

10. Cohen, S.D., Hindmarsh, A.C.: CVODE User Guide. Technical Report UCRL-
MA-118618, Lawrence Livermore National Laboratory (1994)

11. Byrne, G.D., Hindmarsh, A.C.: User documentation for PVODE, an ODE solver
for parallel computers. Technical Report UCRL-ID-130884, Lawrence Livermore
National Laboratory (1998)

12. Hindmarsh, A.C., Serban, R.: User Documentation for CVODES, An ODE
Solver with Sensitivity Analysis Capabilities. Technical Report UCRL-MA-148813,
Lawrence Livermore National Laboratory (2002)

13. Taylor, A.G., Hindmarsh, A.C.: User Documentation for KINSOL, A nonlinear
solver for sequential and parallel computers. Technical Report UCRL-ID-131185,
Lawrence Livermore National Laboratory (1998)

14. Hindmarsh, A.C., Taylor, A.G.: User Documentation for IDA, a Differential-
Algebraic Equation Solver for Sequential and Parallel Computers. Technical Report
UCRL-MA-136910, Lawrence Livermore National Laboratory (1999)

15. Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G.,
Lehoucq, R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thorn-
quist, H.K., Tuminaro, R.S., Willenbring, J.M., Williams, A., Stanley, K.S.: An
Overview of the Trilinos Project. ACM TOMS V (2004) 1–27

16. Malony, A., Shende, S., Trebo, N., Ray, J., Armstrong, R., Rasmussen, C., Sottile,
M.: Performance Technology for Parallel and Distributed Component Software.
Concurrency and Computation: Practice and Experience 17 (2005) 117–141

17. G. van Rossum, F.D.J.: An Introduction to Python. Network Theory Ltd (2003)
18. M.Sala: Distributed Sparse Linear Algebra with PyTrilinos. Technical Report

SAND2005-3835, Sandia National Laboratories (2005)


