
A Load Balancing Strategy for Computations on
Large, Fixed Data Sets

Jan Christian Meyer

Norwegian University of Science and Technology,
Dept. of Computer and Information Science,

Sem Sælands v.7-9, NO-7034 Trondheim, Norway
Jan.Christian.Meyer@idi.ntnu.no

Abstract. Balancing computational loads is a topic where the conflict-
ing demands of general and optimal solutions result in a great variety of
strategies, each tailored to the specific needs of the application in ques-
tion. This work develops a method for balancing a computational load
where large sets of input data may be examined in advance, but where
requests on this set may appear and change continuously, affecting the
system load. The approach is based on approximating the computational
cost by a polynomial, and estimating the load as an integral of this ex-
pression.

1 Background

The work originates from the need to adapt an existing load balancing scheme
for a server which animates visualisations of geological data sets in real-time to
suit a multi-user environment. The original system relies on a static subdivision
of its input data in order to distribute the computational load on a network of
dedicated computers. The nature of this approach makes it ill-suited for multi-
user requirements, as it effectively assumes that the computational tasks from
each user are best distributed across the entire array of machines, and does not
consider variations in the data set sizes and computational complexity of the
requests.

The developed approach follows the pattern of a generic description of dynamic
load balancing strategies due to Piersall and Elfayoumi [1]. It is, however, not a
pure dynamic solution; it also borrows a feature from semi-static load balancing
schemes to exploit the application specific property of read-only access to the
data set.

Load balancing methods may be classified in terms of 3 broad categories, with
the following characteristic properties:

– Static load balancing relies on a predetermined optimal subdivision of the
computational load, which can be embedded in the program task to be bal-
anced.



2

– Semi-static load balancing relies on some measured or determined system
state which is known at the beginning of run-time, and which allows the
program to adjust it’s parameters to balance the load before execution.

– Dynamic load balancing continually reconfigures the distribution of the
computational load while the program is running.

The process of dynamic load balancing breaks down into the following phases:

1. Load evaluation involves estimating whether the present state of the com-
putational load warrants proceeding with an effort to bring it into balance.

2. Profitability determination involves evaluating the cost of maintaining
an imbalanced load, and comparing it to the cost involved in bringing it into
balance.

3. Work transfer calculation involves determining the work transfer set, i.e.
the set of tasks which can be transferred or exchanged in order to bring the
computation into balance.

4. Task selection involves selecting a set of tasks and transfers which will
satisfy the work transfer set generated in the previous phase.

5. Task migration consists of carrying out the work transfer decided upon in
the previous phase.

2 Model

The work introduces a simplified theoretical model of a distributed-memory
parallel computer, a data set, and a program to run on this set. The generic
model is adapted to the special case of homogenous and fully interconnected
computational clusters, as this is the class of systems the visualisation server is
intended to run on.

The system as a whole is modelled in terms of

– a set of machines
– a program, expressed as a set of functions
– a set of data
– a cost function which maps the application of a function to a data subset to

the time it requires to run
– a transfer constant which expresses the time required to move a data subset

from one machine to another

The work proposes computationally efficient strategies for the 5 phases of dy-
namic load balancing, expressed in terms of this model. The consideration is
made that computational efficiency in the load balancing algorithm is more im-
portant than the optimality of its results in a real-time context. In particular,
it may be noted that Watts [2] points out the general task selection problem as
NP-complete. Since this constitutes one of the phases of dynamic load balancing,
a general and optimal algorithm is likely to be computationally intractable.



3

The main contribution of this work is to exploit the read-only nature of the
data sets to be visualised, in order to prepare an appropriate load function
which can be efficiently computed. It is argued that the cost function for fixed
sets of functions and data may be approximated by polynomial functions in
practically all cases, and that a computational load consisting of a combination
of functions and data from these sets may be modelled by evaluating definite
integrals resulting from the (analytic) integral of this approximate cost function.
Solving a general definite integral with respect to its bounds provides a technique
for partitioning the computational load into equally expensive tasks.

Specifically, let λf(X) denote the application of function f to the domain
X = x1, ..., xn, and let c(λf(X)) be the polynomial approximating the cost of
this evaluation. The computational load of evaluating f across all of X may then
be defined as

lc =
∫

c(λf(X)) (1)

or, for some bounded subproblem,

lc(a, b) =
∫ b

a

c(λf(X)) (2)

As c is a polynomial, it is easily integrated analytically, yielding an expression
for lc(a, b) which may be solved with respect to b. By initialising a as the lower
bound of X, this lets us specify a desired load value to find a corresponding b
in the domain, such that the application of f from a through b comes at the
specified expense. Applying this inductively with increasing lower bounds, the
entire domain may be sectioned into any number of subdomains, all representing
equal computational loads.

This technique results in an efficient algorithm for work transfer calculation,
at the expense of restricting freedom of choice in the task selection phase. The
effectiveness of the method is directly related to the fitness of the approximate
cost function.

3 Experimental results

The method of balancing a computational load by integrating an approximating
polynomial is applied to a hypothetical sample load, in order to provide a proof-
of-concept implementation.

Two experiments are described in detail. These confirm the assumption about
the relation between the fitness of the approximating polynomial and the effec-
tiveness of the approach.



4

The first experiment approximates the load using a function which is inte-
grated and solved with respect to its bounds analytically, in order to produce a
work distribution. The resulting distribution is produced in a negligible amount
of time, but the simplicity of the approximating polynomial creates a signifi-
cant imbalance in the distribution, with some tasks requiring up to 20% longer
execution time than others.

The second experiment utilises the Newton/Raphson iterative method for find-
ing the bounds of the definite integral, which admits a better approximation of
the load, but leads to greater complexity in the work transfer calculation. This
improves the accuracy of the load division, resulting in a worst case of 8% longer
runtimes for some tasks. The increased overhead for evaluating the bounds re-
mains insignificant compared to the computation of the tasks themselves.

The appliccability of a numerical solution affords greater liberty in the construc-
tion of the approximating polynomial, suggesting that still higher precisions may
be attained without incurring an unreasonable overhead for computing transfer
sets. In fact, the costs of evaluating the integrals and bounds which result in
the work distributions of the experiments are small enough that difficulties arise
when attempting to measure their magnitudes. Thus, the computational effi-
ciency of the developed technique is considered sufficient for the method to be
usable in interactive software without increasing response times noticeably.

4 Conclusions

The work demonstrates that it is possible to implement an algorithm which
partitions a complex and nonuniform computational load into approximately
equal parts with an almost nonexistent overhead.

These benefits come at the expense of not allowing the data set to alter during
run time. It is also necessary to expend some amount of resources on profiling
the data and function sets off-line, to facilitate the construction of appropriate
polynomials which approximate the computational cost of applying the set of
functions to the set of data.

References

1. Piersall, S., Elfayoumi, S.: DYLAPSI: A Dynamic Load-Balancing Architecture for
Image Processing Applications. ISCA 15th International Conference on Parallel and
Distributed Computing (2002)

2. Watts, J., Taylor, S.: A Practical Approach to Dynamic Load Balancing. IEEE
Transactions on Parallel and Distributed Systems 9(3), (1998) p. 235


