
Trusting floating point benchmarks – are your
benchmarks really data independent?

John Markus Bjørndalen and Otto J. Anshus

(johnm, otto)@cs.uit.no
Department of Computer Science, University of Tromsø, Norway

Abstract. Benchmarks are important tools for studying increasingly complex
hardware architectures and software systems.
Two seemingly common assumptions are that the execution time of floating point
operations do not change much with different input values, and that the execution
time of a benchmark does not vary much if the input and computed values do not
influence any branches. These assumption do not always hold.
There is significant overhead in handlingdenormalizedfloating point values (a
representation automatically used by the CPU to represent values close to zero)
on-chip on modern Intel hardware, even if the program can continue uninter-
rupted. We have observed that even a small fraction of denormal numbers in a
textbook benchmark significantly increases the execution time of the benchmark,
leading to the wrong conclusions about the relative efficiency of different hard-
ware architectures and about scalability problems of a cluster benchmark.

1 Introduction

Denormalizednumbers is a floating point representation that computers use automat-
ically for numbers close to 0 when the result of an operationunderflowsand is too
small to represent using the normal representation. Instructions involving denormalized
numbers trigger Floating Point Exceptions, which are handled on-chip on modern pro-
cessors, producing reasonable results and allowing the execution to proceed without
interruption [1]. The programmer can unmask a control flag in the CPU to enable a
software exception handler to be called.

Intel documentation [2], and documents such as [3], warn about significant overhead
when handling exceptions in software, but programmers may not expect the overhead to
be very high when the floating point exceptions are handled in hardware and essentially
ignored by the programmer.

2 Experiments

We first found the problem in an implementation of a well known algorithm for solv-
ing partial differential equations, Successive Over-relaxation (SOR) using a Red-Black
scheme. To simplify the experiments, we use the Jacobi Iteration method, which has
similar behavior to the SOR benchmark. We provide more details about the experi-
ments and how textbooks and general programmer guidelines trap the programmers in
[4].

The experiments were run on the following machines:

– Intel: Dell Precision Workstation 370, 3.2 GHz Intel Pentium 4 (Prescott) EMT64,
2GB RAM, running Rocks Linux 3.3.0 with Linux kernel 2.4.21 in 64-bit mode.

– cluster: A cluster of 40 Dell Precision Workstation 370s, configured as above, in-
terconnected using gigabit Ethernet over a 48-port HP Procurve 2848 switch.

– PowerPC: Apple PowerMac G5, Dual 2.5 GHz PowerPC G5, 4GB DDR SDRAM,
512KB L2 cache per CPU, 1.25GHz bus speed.

– AMD : AMD Athlon 64 X2 4400+ 2.2GHz, 2GB DDR SDRAM, running Ubuntu
Linux 5.10 with kernel 2.6.12-10-k7-smp.

The benchmark was compiled with GCC version 3.3.5 with the flags “-Wall -O3”
on the Intel architecture. On the PowerMac, GCC 4.0.0 was used with the same flags.

Jacobi executed for 1500 iterations with three different 750x750 matrices as datasets:
one that produces about 4% denormal numbers (denormal), one that does not produce
denormal numbers (normal) and one where all input and computed values are in denor-
mal form (all denormal). All benchmarks are executed with floating point exceptions
masked, so no software handlers are triggered.

3 Results

3.1 Impact of denormal numbers on Intel Prescott

The benchmark was instrumented using the Pentium time stamp counter to measure the
execution time of each iteration of Jacobi (1-1500), and of the execution time of each
row in each iteration.

In a separate run, the contents of the matrices were dumped to disk for later analysis.
These dumped values were then used to count the number of denormal results per iter-
ation, shown in figure 1 (right), and to visualize where denormalized numbers occured
in the computations.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 200 400 600 800 1000 1200 1400 1600

M
ic

ro
se

co
nd

s

Iteration number

Time spent in each iteration

iteration times

 0

 5000

 10000

 15000

 20000

 25000

 0 200 400 600 800 1000 1200 1400 1600

N
um

be
r

of
 d

en
or

m
al

iz
ed

 v
al

ue
s

Iteration number

Number of denormalized results after each iteration

iteration times

Fig. 1: Left: execution time of each of 1500 iterations. Right: number of floating point values in
denormalized form stored in the result matrix in each iteration. In experiments with no denor-
malied numbers, the graphs show straight horizontal lines.

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
pe

ed
up

Number of processes

Normalized
ideal speedup
Denormalized

Fig. 2: Speedup of Jacobi on a cluster using 1-8 nodes.

Machine + Dataset min max
Intel, normal 5.33 5.34
Intel, denormal 13.44 13.47
Intel, all denormal 371.73373.05
AMD, normal 6.65 6.71
AMD, denormal 8.46 8.61
AMD, all denormal 88.38 88.99
PPC,normal 5.04 5.05
PPC,denormal 5.40 5.41
PPC,all denormal 18.42 18.43

Table 1: Minimum and maximum
execution times of 5 runs of Jacobi.

Figure 1 shows that the number of denormalized numbers per iteration (right) corre-
spond directly with the execution time per iteration (left). When denormalized numbers
occur, the computation time rapidly increases, and when the number of denormalized
numbers decrease, the computation time decreases correspondingly. After a while, the
last denormalized number disappears and the computation time is back to normal. The
jagged pattern on the graph showing the number of denormalized numbers is also re-
flected in the jagged pattern of the graph showing the execution time.

3.2 Impact on comparisons of PowerPC, AMD and Intel P4 Prescott

Table 1 shows that the Intel processor has higher overheads when handling denormal-
ized numbers than the PowerPC machine, with a factor 70 betweennormal and all
denormalcompared to a factor 3.65 on the PowerPC machine. This may influence com-
parisons of architectures. As an example, consider the results of the PowerPCdenormal
(5.40) and Inteldenormal(13.44), which indicate that the PowerPC architecture is more
efficient for the Jacobi algorithm. With the dataset with normalized numbers, the differ-
ence is much smaller (5.04 vs. 5.33).

This problem is more significant for the comparison of AMD vs. Intel, where for
thedenormalcase, the AMD processor is faster than the Intel processor, while for the
normalcase, the Intel processor is faster.

This indicates that when moving benchmarks across architectures, corner cases that
previously did not influence the benchmarks significantly may start to have an impact,
and the benchmarks may not work as originally planned even if the computed results
are identical.

3.3 Parallel Jacobi on a cluster

Figure 2 shows the results of running Jacobi using LAM-MPI 7.1.1 [5] with 1 to 8 nodes
of the cluster. The implementation divides the matrix into bands that are1=N rows thick
and each process exchanges the edges of its band with the neighbor processes.

The graph shows that the dataset with denormalized numbers significantly influ-
ence the scalability of the application, resulting in a speedup for 8 processes of 4.05
compared to a speedup of 6.19 when the computation has no denormalized numbers.

The stairs in thedenormalgraph is a result of a denormalized band of numbers
that move through the rows, influencing at least one of the processes in every itera-
tion. Since the processes are globally synchronized, one process experiencing a band of
denormalized numbers will slow down the other processes.

4 Conclusions

Optimizing for the common case can introduce unoptimized cases that, even if they
occur infrequently, cost enough to significantly impact applications, a point well made
by Intel’s chief IA32 architect [6].

We have shown how a benchmark influenced by floating point exceptions in only a
small fraction of the calculations may lead to the wrong conclusions about the relative
performance of two architectures, and how a benchmark may wrongly blame the paral-
lel algorithm or communication library for a performance problem on the cluster when
the problem is in the applications use of floating point numbers.

Effects such as these could potentially cause heuristics that automatically tune li-
braries for a given architecture, such as ATLAS [7], to select the wrong optimizations.

To determine the scope of the problem, we have started running experiments with
known benchmarks to determine whether they are influenced by denormal numbers or
similar corner cases. Preliminary experiments with High Performance Linpack (HPL)
[8] indicates that it computes denormalized numbers in one section of the benchmark,
but we do not yet know whether the benchmark is influenced by this.

Determining the extent of the problem for a number of benchmarks would be sim-
plified with a benchmark validation and profiling tool which could determine whether
known hardware corner cases are triggered, and to what extent these cases are trig-
gered. One approach we are investigating is to build such a tool based on the Bochs PC
emulator.

References

1. Intel. Intel Architecture Software Developer’s Manual – Volume 1: Basic Architecture. Intel,
Order Number 243190, 1999.

2. Intel. Intel C++ Compiler and Intel Fortran Compiler 8.X Performance Guide, version 1.0.3.
Intel Corporation, 2004.

3. David Goldberg. What every computer scientist should know about floating-point arithmetic.
ACM Comput. Surv., 23(1):5–48, 1991.

4. John Markus Bjørndalen and Otto Anshus. Lessons learning in benchmarking – Floating point
benchmarks: can you trust them? November 2005.

5. LAM-MPI homepage. http://www.lam-mpi.org/.
6. Bob Colwell. What’s the Worst That Can Happen?IEEE Computer, pages 12–15, May 2005.
7. R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical optimization of

software and the ATLAS project.Parallel Computing, 27(1–2):3–35, 2001.
8. The LINPACK Benchmark, http://www.netlib.org/linpack/.

