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1 Introduction

This paper describes an extension to LAM/MPI[3] which enables the user to
configure a subset of the collective operations by using Scheme[5], which is a
high level general purpose programming language in the Lisp family.

Currently the operations that may be configured are broadcast, reduce, allre-
duce and barrier, but the system is general enough to be extended with other
operations if that is required. Sophisticated reconfigurations can be done without
modifying or recompiling the application that is to be run.

We will show that high level languages and Scheme in particular, could be
used in high performance computing despited the general opinion that such
languages are slow, and that this would be an improvement compared to the
more conventional way of writing such extensions in low level languages like C,
due to the fact that a lot of details could be hidden or abstracted away.

We will also use CoMPI to show that reconfiguration of collective operations
in MPI could result in better scaling when running in multi-cluster1 environ-
ments.

The goal of CoMPI is to provide a system which is simple to use and
to provide a framework for general experimenting with collective operations in
LAM/MPI. It was largely inspired by the PATHS[2] system which uses Python
to set up an runtime environment for parallel applications.

Compiled Communication[4] (CC-MPI) describes a method to optimize clus-
ter communication by using information available at compile time by using
a modified C compiler. CC-MPI and CoMPI share some of the same basic
ideas about doing as much optimization as possible before the communication
takes place. In CC-MPI this happens when the application is compiled, while in
CoMPI when an opertion is invoked for the the first time.

2 Architecture of CoMPI

The idea behind CoMPI is that when a collective operation is invoked, a hash
table lookup is done to check if a suitable coll-op closure2 exists to perform the

1 A multi-cluster is in our definition a collection of clusters connected by high la-
tency/low bandwidth WAN links.

2 A closure in Lisp terminology a closure is an object containing a function and the
lexical environment in which the function was created.
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given operation. If no such closure exists, a coll-op creator is invoked to create
one. The newly created coll-op closure would then be invoked and also cached
for reuse later.

Each supported collective operation needs it’s own set of unique coll-op cre-
ators. By default, creators are supplied to mimic the semantic behavior of native
LAM. The most primitive way to configure operations, would be for the user to
install new coll-op creators which will return specialized coll-op closures. Coll-op
creators are invoke in reverse order of installation (latest invoked first) until one
of them returns a closure. They may also be chained by having one creator call-
ing the next in the list. Chaining may be useful to create wrappers for profiling
or debugging.

The interface between the MPI API layer and CoMPI consists of functions
called coll-op trampolines which are invoked by MPI when the application does a
collective operation. The trampolines are responsible for looking up and invoking
coll-op closures.

3 CoMPI Advantage

One of the advantages with CoMPI is the possibility to configure and experi-
ment with MPI without having to recompile applications. In some cases the user
may not even have the source code to the application he is running. LAM/MPI
already has some options which may be used at runtime to configure and cus-
tomize the environment, but the strength of CoMPI lies in the use of a high
level programming language. By not having think about low level details such as
memory management, the task of trying out different configuration may become
much simpler than if he were to use a language like C. Also by not having to stick
with a limited customization language, but having access to a general purpose
language give the system great flexibility. For simpler configurations CoMPI
comes with a set of coll-op creators which let the user specify the network topol-
ogy based on node ranks or IP numbers.

4 Experiments

A simple experiment were conducted to show that the performance of CoMPI
is comparable to that of native LAM when using the same algorithms, and that
the choice of implementation language did not have a negative impact on per-
formance. In addition we’re running the same benchmark with a communication
pattern configured to match the underlying network layout.

The hardware platform used for these experiments consists of three intercon-
nected clusters, each having the following configuration:

– 28 Dell 370 P4 Prescott, 3.2 GHz, 2 GB RAM
– 38 Dell 370 Prescott 64 EMT, 3.2 GHz, 2 GB RAM
– 44 Dell 360 Prescott 3.2 GHz, 2 GB RAM



3

The nodes of the clusters and the front-ends are interconnected using TCP/IP
over Ethernet through 1Gbit switches.

Each cluster are using IP addresses from the private 10.0.0.0 range and are
not reachable from outside of the front-ends. To allow routing between nodes
from different clusters, IP tunnels are set up between the front-ends. This add
to the inter-cluster latency, increasing it from 100 to 300-500 microseconds, which
are taken advantage of to emulate WAN connections.

Figure 4 show the code run in the experiment. The code measure the average
execution time of 1000 MPI_Allreduce operations, with buffer sizes for 1 to
50000 elements. To make sure that the correct sum is computed, the code also
checks the result of each iteration. This is the same benchmark as used in [1].

t1 = get_usecs ();

for (i = 0; i < ITERS; i++) {
MPI_Allreduce (&i, &ghit, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);

if (ghit != (i* size))
printf ("oops at %d. %d != %d\n", i, ghit, (i * size));

}
t2 = get_usecs ();

Figure 1. Global reduction benchmark
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Figure 2. Results of the global sum experiments

Figure 2 shows the result of running the global sum benchmark. The following
experiments were done:
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Native LAM/MPI (lam_basic) The experiment was run using LAM/MPI’s
native logarithmic broadcast and reduce trees.

Co-mpi using the lam_basic algorithm and tree used above The exper-
iment was run using CoMPI with the same algorithm as lam_basic.

Co-mpi with hierarchical mapping In this experiment we used a hierarchi-
cal mapping which minimize the inter-cluster communication. This mimics
asymmetric algorithm in used by MagPIe [6].

As the figure shows, the overhead of CoMPI is insignificant compared to
native LAM when both systems use the same communication pattern. With a
hierarchical mapping, the performance of CoMPI is significant better than of
LAM.

5 Conclusion

We have shown that high level scripting languages are well suited for use in
the infrastructure of high performance clusters by using such a language to
implement a collective operations module for LAM/MPI.

We have created a flexible framework, CoMPI, which may be used for ex-
perimentation and optimization of collective operation in LAM/MPI without
modifying existing applications.

When running experiments the overhead observed by using CoMPI is neg-
ligible compared to lam_basic. By reconfiguring the communication pattern
to match the actual network layout substantial increase in performance were
achieved.
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