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Abstract. We consider the parallel computation of interior eigenstates
of large Hermitian matrices arising from plane-wave discretization of ef-
fective single-particle Schrödinger equations.
We apply a folded-spectrum approach based on Preconditioned Conju-
gate Gradient (PCG) to compute only a small number of eigenstates
close to the band gap whose location determines electronic and optical
properties of the system.
We show how to improve the scalability of the eigensolver from observing
that the quantum dot band states can be well approximated by states of
bulk systems. We make use of these cheaply computable bulk eigenstates
to improve the choice of the starting vector and the preconditioner for
the eigensolver.

1 Introduction

The computation of electronic properties of large nano structures such as quan-
tum dots is an important field of current research. Its significance is underlined
by a number of activities such as the DOE-funded initiative ”Predicting the
Electronic Properties of 3D Million-Atom Semiconductor Nanostructure Archi-
tectures” that supports this current work.

We are interested in enhancing electronic structure calculations that are
based on the solution of effective single-particle Schrödinger equations

HΨi ≡

[
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]

Ψi = EiΨi. (1)

In this equation, H denotes the approximate Hamiltonian. The atomic system
is described by the potential V which we assume as externally given empirical
pseudopotential [2]. If the system has an electron with energy Ei, then the wave
function Ψi(r) describes the spatial probability distribution for the electron.

The physical interest often lies in only a small number of eigenstates of (1)
which are relevant for determining certain optical and electronic properties. A
common task is to compute the states at the top of the valence and at the bottom
of the conduction band to find the band gap.



In a discrete finite plane-wave basis, equation (1) directly translates into a
Hermitian eigenvalue problem and we use the same notation H for the matrix in
question. H is only implicitly available through matrix vector products and via
the Fast Fourier Transform (FFT). This together with the system size requires
the use of efficient iterative eigenvalue methods.

Our parallel Energy SCAN (ESCAN) method [2] uses a folded spectrum
approach [6] to find interior eigenstates. Based on physical knowledge about the
system, a reference energy Er is chosen and then the smallest eigenvalues of the
system (H − Er)

2 are computed via Preconditioned Conjugate Gradient(PCG)
Rayleigh-Quotient minimization, see the references in [4] and [5]. However, as
described in Section 2, there can be convergence problems for large systems with
strongly clustered, nearly degenerate eigenstates. The squaring of the matrix also
contributes to the stronger clustering of the eigenvalues.

2 PCG for quantum dot valence band computations

The smallest eigenvalue λ of the Hermitian matrix A ≡ (H −Er)
2 (the one that

corresponds to the eigenvalue of H closest to the reference point Er) minimizes
the Rayleigh Quotient, that is

λ = arg min
x 6=0

ρ(x) ≡
x∗Ax

x∗x
. (2)

From a current iterate xk and a descent direction pk, the method finds the angle

θk = arg min ρ(xk+1) ≡ ρ(xk cos θk + pk sin θk). (3)

The descent direction is given by pk = −∇ρ(xk) + βkpk−1, where the gradient
∇ρ(x) = 2(Ax − ρ(x)x)/(x∗x) is just a scalar multiple of the residual and βk is
a scalar for whose choice various strategies exist, see [4]. A preconditioner P can
be used to influence the choice of the descent direction [3] via

pk = −P∇ρ(xk) + βkpk−1. (4)

As shown later, the preconditioner in the current version of ESCAN [2] can
lead to very slow convergence in valence band computations of quantum dots.
In the following, we discuss possibilities to improve this.

3 How to make use of bulk information

The properties of ideal bulk systems such as crystals are well understood by
material scientists. Each so-called Bloch eigenstate of the bulk Hamiltonian is of
the form Ψnk(r) = unk(r) ∗ exp(−ik ∗ r), where unk(r) is periodic [1].

In contrast, quantum dots represent more complicated physical objects where
bulk materials constitute the interior and vacuum the exterior. However, the key
observation on which we base our approach is that for large enough systems, the
converged quantum dot states around the band gap have a small angle to the
subspace defined by the corresponding bulk system states [7].



3.1 An example

As an example, we consider a bulk system and a quantum dot consisting of
Cadmium (Cd) and Selenium (Se) material. The characteristics of both systems
are compared in Table 1.

bulk system quantum dot

number of atoms 1 Cd, 1 Se 784 Cd, 739 Se
dimension(H) plane wave 2048 1.45E+5
Table 1. Comparison between bulk and quantum dot.

3.2 Selection of an improved initial vector

While the Rayleigh-Ritz procedure is too expensive, we can use the bulk subspace
to find a good initial vector for the PCG iteration. Experimentally, we found that
the corresponding bulk wave function at the gamma point (the center of the first
Brioullin zone [1]). constitutes an excellent starting vector for the PCG iteration.

We use the gamma point bulk state Ψn0 and limit its support to the interior of
the quantum dot, that is we cut off the initial vector in the part that corresponds
to vacuum. From physics, it is known that the true solution we are looking for
typically is confined to the interior of the quantum dot, see the picture on the
left of Figure 1.

3.3 The previously used preconditioner

The preconditioner that was previously used in ESCAN is the diagonal

P = D ≡ (I + (−
1

2
∇

2 + Vavg − Eref )/Ek)2

where −
1

2
∇

2 is the Laplacian (diagonal in the Fourier space), Eref is the shift
used in the folded spectrum, Vavg is the average potential and Ek is the average
kinetic energy of a given initial approximation of a wave function ψinit.

3.4 An improved preconditioner based on bulk band computation

We define HBB to be the Hamiltonian stemming from the discretization of the
Schrödinger’s equation for a bulk system. Denote its eigenfunctions by Ψnk(r)
with corresponding energies Enk.

We decompose the residual R into its SBB and S⊥
BB components, i.e. QQTR

and R −QQTR, and precondition the SBB component with H−1

BB and the rest
with the diagonal preconditioner D−1, i.e.

PR ≡ QH−1

BBQ
TR+D−1(R−QQTR). (5)



3.5 Comparison of results

Figure 1 shows the improvements over the old preconditioner with random ini-
tial vector. From top to bottom, see the curves for the old preconditioner with
random initial vector, old preconditioner with improved initial vector, and new
preconditioner with improved initial vector.
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Fig. 1. Left hand side: cross section of the charge density for the state at the top of the
valence band. The wave-function is clearly confined to the interior of the quantum dot.
Right hand side: Convergence for computation of the corresponding state. The new
initial vector improves the convergence of the old diagonal preconditioner. The new
preconditioner together with the new initial vector further improves the convergence.
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