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Abstract. The computation of eigenvalues and eigenvectors is an im-
portant and often time-consuming phase in a large range of computer
simulations. Recent efforts in the development of eigensolver libraries
have given users robust algorithms without the need for users to spend
much time in programming. Yet, given the variety of numerical algo-
rithms that are available to domain scientists, choosing the “best” algo-
rithm for increasingly sophisticated and larger applications is a daunting
task. In this paper, we discuss a methodology and a software toolbox that
aims at guiding the user through the maze of various eigensolvers with
different configurations, and at determining the best eigensolver based
on the application type and the matrix properties.

1 Introduction and Motivation

The computation of eigenvalues and eigenvectors is an important and often time-
consuming phase in computer simulations, including the study of nuclear reactor
dynamics, finite element dynamic analysis of structural models, design of particle
accelerators, the solution of Schrödinger’s equation in chemistry and physics, the
design of microelectromechanical systems, etc. Because of the need for higher
accuracy and higher level of details in the models, the size and complexity of the
computations grow as fast as the advancement of the computer hardware.

In order to cope with the increasing need for solving large-scale eigenvalue
problems, various (sequential and parallel) numerical algorithms have been de-
veloped [1, 2]. With the growing availability of good implementations, domain
scientists are no longer facing the problem of a lack of algorithms to use but
rather too many algorithms to choose from. (In this paper, “algorithm” is inter-
changeable with “eigensolver”.) However, little consideration is given to mecha-
nisms that provide an effective way for a user to sift out the more appropriate
eigensolver for a particular application. In general, a suitable choice may have
an order of magnitude impact on performance compared to a bad choice.

We identify the following challenges for the selection of the “best” eigen-
solver: i) Given the vast number of algorithms and computer architectures, how
to facilitate the selection process for a non-expert user. Different algorithms have
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different convergence behaviors, memory requirements, and trade-offs between
accuracy and performance. It is therefore difficult and tedious to manually track
these metrics; ideally, the selection should be done automatically. ii) There is no
unified software framework that facilitates swapping among different algorithm
implementations. The Eigentemplates book [3] provides an excellent algorithmic
guideline but to fully appreciate that book a user must be equipped with suffi-
cient knowledge of numerical analysis and programming skills, in particular on
high-end computers. iii) Usually, there are a large number of parameters associ-
ated with each algorithm, which can be adjusted in order to make the algorithm
perform more efficiently. Even if there were a collection of libraries with a unified
interface, it becomes unfeasible for a potential user to try out every algorithm
configuration in a timely fashion.

The objective of this work is to address some of the aforementioned chal-
lenges, and present a design and methodology towards an automatic application-
based eigensolver selection toolbox, EigAdept, which also incorporates an in-
telligent engine. In the following sections we summarize the system architecture,
how it is implemented and used, what are its major components and how the
components are connected.

2 Methodology

Choosing an appropriate eigensolver (and its parameters) depends on the mathe-
matical properties of the problem, the desired spectral information, and the avail-
able operations and their costs. The Eigentemplates book [3] provides valuable
“decision trees” based on such information but given the large, high-dimensional
algorithm/parameter space, a simple decision-tree mechanism may be insuffi-
cient. Furthermore, some information may not be available at runtime or may
be costly to obtain. EigAdept intends to address the dilemma of “less informa-
tion but accurate solving” by providing algorithm recommendations based on
previous knowledge. Its main components are (see [4] for details):

1. A Universal User Interface. For different algorithms with different param-
eters, it is much easier for the user to invoke a unique interface (function),
which will then select and execute the algorithm, and return the result to
the user. This process is transparent to the user, although the user can also
specify her preferences for any desired algorithm or execution criteria (such
as memory limit, convergence rate, iteration counts, etc.)

2. A Data Analyzer. It receives the input data submitted by the user, and ex-
tracts and passes the necessary information required by the intelligent engine
(described below) to make an algorithm-wise decision. If some information is
missing, the intelligent engine still tries to find a suitable algorithm providing
a similar problem has been previously solved.

3. Decision Trees. It is a repository of decision trees incorporated from [3].
4. A Relational Database. The database initially contains some training sets

from which the best eigensolver for certain applications are known before-
hand. Information about each new application solved is stored in the database
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with all the application properties and eigensolver information. The database
gradually improves its contents as more problems are solved, thereby making
the algorithm prediction increasingly accurate. The database is implemented
with MySQL, which is a free open source database software [5].

5. An Intelligent Engine. This is the central part of the EigAdept system. It
receives information from the data analyzer and searches the decision tree
for an appropriate algorithm. If the decision tree does not lead to any match,
the intelligent engine queries the database for a suitable eigensolver based on
the application characteristics (and possibly the user’s preferred algorithm
properties).

6. Numerical Libraries. This is a collection of the currently available libraries
providing eigensolvers. Once an algorithm is chosen by the intelligent engine,
it is the intelligent engine’s task to pass the parameters required by the
underlying library.

7. Computational Environment. This is where the application is executed. It
can be a stand alone desktop, a Linux cluster, or a hybrid of MPP and
shared memory machines.

3 Current and Future Work

Automatically choosing an optimal eigensolver is in many ways more difficult
than doing so for linear solvers. In eigenvalue analyses, some of the important
data to be taken into account include the dimension of the problem, number
of eigenvalues (and/or eigenvectors) required, location of the required solutions
in the spectrum (i.e. smallest, largest, close to a reference value, etc.), accuracy
of the required solutions, availability of approximate solutions (e.g., obtained
from previous simulations with similar problems) [3], available memory (which
can influence the effectiveness of restarting strategies), etc. For many large-
scale applications an iterative scheme is the method of choice. However, some
simulations may require increasing number of eigenvalues to be computed from
one run to another. In this case, we may reach a breaking point where switching
to a direct method becomes a viable alternative [1].

We focus on a class of eigensolvers based on projection methods, which trans-
form the original eigenvalue problem into a problem associated with an appro-
priate subspace of much reduced dimension, and find the best approximations
from this reduced subspace. These methods are amenable to scalable imple-
mentations and have already been implemented in various libraries, including
PARPACK [6], BLZPACK [7], JaDa [8], and TRLan [9]. We will enhance some
of these eigensolvers with shift-and-invert capabilities using existing scalable
sparse direct linear solvers, such as SuperLU [10] and MUMPS [11].

There exists a number of research projects seeking goals similar to ours
but using different approaches [12, 13] and offering different functionalities. Our
work targets large-scale eigenvalue applications without requiring any special
format to describe the input data. Instead, information comes from the heuristic
database and the data analyzer that examines the user input data. The intelligent
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engine acts as a middleware to connect the user application and the numerical li-
braries. The user does not need to change her application code if she wants to use
another library. The combination of on-line and off-line mechanisms adaptively
increase the “wisdom” of the intelligent engine algorithm selection procedure.

EigAdept is implemented in C++, which provides for a convenient way
of adding new capabilities. Polymorphism enables EigAdept to solve a prob-
lem using the same library but with different input parameters. It also allows
for good interoperability with libraries written in C or Fortran. At the time
of this writing, three major classes have been implemented: LINSolver (Lin-
ear Solver)class, EIGSolver (Eigenvalue solver) class and Options (Options for
EIGSolver) class. For sparse matrices, we support both Compress Row Storage
(CRS) and Compressed Column Storage (CCS) schemes. Our future work will
focus on better defining these classes and the information to be stored in the
relational database.
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