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Abstract. Linear algebra algorithm commonly encapsulate parallelizm
in Basic Linear Algebra Subroutines (BLAS). This solution relies on the
fork-join model of parallel execution, which may result in suboptimal
performance. To overcome the shortcomings of this approach a pipelined
model of parallel execution is presented and the idea of arbitrary looka-
head is utilized in order to suppress the negative effects of inherently
sequential steps of the algorithms. Application to LU, Cholesky and QR
factorizations is presented. The method is especially suitable for shared
memory systems with small communication and synchronization over-
heads.

1 Introduction

Blocked implementation of LU, Cholesky and QR factorizations from the LA-
PACK library are used as a basis for development of the pipelined algorithms.
In the following sections the algorithms are briefly reviewed in the formulation
which is implemented in the LAPACK library. Then their pipelied implemen-
tatin for shared memory system using POSIX threads is presented altogether
with the idea of a flexible lookahead. Discussion of the results follows.

2 Factorizations

2.1 LU Factorization

The LU factorization with partial row pivoting of an m × n real matrix A has
the form

A = PLU,

where L is an m× n real unit lower triangular matrix, U is an n× n real upper
triangular matrix and P is a permutation matrix. The derivation of the blocked
algorithm is straightforward [2, 1]. In LAPACK a single step of the algorithm is
implemented by the following sequence of calls to LAPACK and BLAS routines:
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1. Factorize the column panel:
– xGETF2,

2. Update the matrix A to the right from the panel:
– xLASWP, xTRSM, xGEMM.

Here we simplified the actual algorithm implemented in the LAPACK library by
removing the row echanges to the left from the panel. Those can conveniently
be performed at the end of the factorization.

2.2 Cholesky Factorization

The Cholesky factorization of an n × n real symmetric positive definite matrix
A has the form

A = LLT ,

where L is an n×n real lower triangular matrix with positive diagonal elements.
The derivation of the blocked algorithm is analogous to the one for LU factoriza-
tion. In LAPACK a single step of the algorithm is implemented by the following
sequence of calls to LAPACK and BLAS routines:

1. Factorize the row panel:
– xSYRK, xPOTF2,

2. Update the matrix A down from the panel:
– xGEMM, xTRSM.

2.3 QR Factorization

The QR factorization of an m × n real matrix A has the form

A = QR,

where Q is an m × m real orthogonal matrix and R is an m × n real upper
triangular matrix. The traditional algorithm for QR factorization applies a series
of elementary Householder matrices of the general form

H = I − τvvT ,

where v is a column vector and τ is a scalar. In the block form of the algorithm
a product of nb elementary Householder matrices is represented in the form [3,
4]

H1H2 . . . HNB = I − V TV T ,

where V is an n × n real matrix those columns are the individual vectors v

and T is an nb × nb real upper triangular matrix. For the derivation of the
blocked algorithm the reader is referred to the original papers mentioned above.
In LAPACK a single step of the algorithm is implemented by the following
sequence of calls to LAPACK and BLAS routines:

1. Factorize the column panel:
– xGEQR2, xLARFT,

2. Update the matrix A to the right from the panel:
– xLARFB.
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3 Pipeline Organization

The approach is presented in the context of shared memory programming model.
By the same token, no data partitioning or explicit communication is present.
Parallelization relies of the notion of work partitioning, which is an analogue of
data partitioning on distributed memory systems. In this work 1D block cyclic
work partitioning is utilized. The input matrix is partitioned in block columns for
the LU and QR factorizations and in block rows for the Cholesky factorization
of a lower triangular matrix - the natural choice for each algorithm given the
LAPACK formulations. In practice each thread of execuiton follows the same
algorithmic path and skips tasks involving data which is not assigned to that
thread (Fig. 1).

Fig. 1. Shared memory parallelization through work partitioning.

The three algorithms introduced above share the common behaviour of fac-
torizing a panel and then updating the remaining part of the matrix A. In all
cases panel factorization is an inherently sequential task and is most efficiently
performed on a single processor. By the same token panel factorization becomes
the least efficient tasks in parallel execuiton, with all processors blocking until its
completion. We may note, however, that each factorization has many algorith-
mic variants. In particular panel factorizations can be initiated before updating
of the trailing matrix is completed, what is the essence of the idea of lookahead.
Fig. 2 shows the steps of LU or QR factorizations for a matrix of size 4 × 4
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blocks with a lookahead of depth 0 (no lookahead), depth 1, and an infinite
depth (maximum possible depth).

Fig. 2. Variants of the LU and QR factorizations. Arrows show data dependencies.

4 Results

In most cases any lookahead of a fixed size substantially improves the perfor-
mance of the discussed algorithms.

It is shown, however, that the use of fixed lookahead is suboptimal and sub-
stantial performance gains can be achieved by dynamically controlling the looka-
head behaviour at runtime.
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