
Workload Characterization using the TAU

Performance System

Sameer S. Shende, Allen D. Malony, and Alan Morris

Performance Research Laboratory,
Department of Computer and Information Science

University of Oregon, Eugene, OR, USA,
{sameer,malony,amorris}@cs.uoregon.edu

Abstract. Workload characterization is an important technique that
helps us understand the performance of parallel applications and the de-
mands they place on the system. Each application run is profiled using
instrumentation at the MPI library level. Characterizing the performance
of the MPI library based on the sizes of messages helps us understand
how the performance of an application is affected based on messages
of different sizes. Partitioning of the time spent in MPI routines based
on the type of MPI operation and the message size involved requires a
two level mapping of performance data. This paper describes how per-
formance mapping is implemented in the TAU performance system to
support workload characterization.
Keywords: Performance mapping, measurement, instrumentation, per-
formance evaluation, workload characterization

1 Introduction

Technology for empirical performance evaluation of parallel programs is driven
by the increasing complexity of high performance computing environments and
programming methodologies. To keep pace with the growing complexity of large
scale parallel supercomputers, performance tools must provide for the effective
instrumentation of complex software and the correlation of runtime performance
data with system characteristics. Workload characterization is an important tool
for understanding the the nature and performance of the workload submitted
to a parallel system. Understanding the workload characteristics helps in corre-
lating the effects of architectural features on workload behavior. It helps us in
planning system capacity based on an assessment of the demands placed on the
system. It helps us identify which components in a system may need to be up-
graded. Performance data is collected for each application. Performance profiles
contain valuable information such as the time spent in each message communica-
tion routine based on the message size. Profiling tools that focus their attention
on capturing aggregate performance data over all invocations of message com-
munication and I/O routines ignore the performance variation for small and
large buffer sizes. In this paper, we describe the techniques for measuring the
performance of a parallel application based on message buffer sizes. When this



information is gathered from several applications and stored in a performance
database, we can classify the performance of the entire system using histograms
that show the time spent in inter-process communication and I/O routines based
on buffer sizes. We discuss the improvements that we made to the TAU perfor-
mance system [3] in the areas of instrumentation, measurement and analysis to
support workload characterization. Section §2 describes the related work in this
area, Section §3 describes the TAU performance system, and describes how per-
formance mapping is applied to characterize the performance of MPI routines
based on the message sizes. Section §5 concludes the paper and we discuss future
work in this section.

2 Related Work

IPM [1] is an integrated performance monitoring system that helps in work-
load characterization. IPM can characterize the application performance based
on message sizes. IPM uses library preloading mechanism for instrumenting an
application under Linux. The performance data is stored in a performance data
repository which can be queried for application characteristics based on a num-
ber of parameters such as dates, and MPI performance data. PerfSuite [7] is
another performance toolkit that builds a performance data repository based
on execution time and hardware performance counters [11] to characterize the
performance of an application and the system.

3 Mapping Performance Data

TAU[2] is an integrated, configurable, and portable profiling and tracing toolkit.
It provides support for portable instrumentation, measurement, and analysis. In-
strumentation calls can be inserted in TAU using a source-to-source translator
tool tau instrumentor based on the Program Database Toolkit (PDT)[8], using
the MPI profiling interface, using DyninstAPI[12] for runtime instrumentation
and re-writing the executable image, or using JVMPI[6] for instrumentation of
Java programs. The TAU performance system provides an API for mapping low-
level performance data to higher modes of abstraction. It uses the SEAA model
[5] of mapping that provides support for both embedded and external associa-
tions. External associations use an external map (implemented as a hash table)
to access performance data using a user specified key. The performance data is
typically for begin/end timers or atomic events that are triggered at a certain
place in the source code. We have built TAU’s callpath[2] and phase profiling
abstractions[4] using this mapping technology. Context events that map atomic
events to the currently executing application callstack, are also implemented
using TAU’s mapping capabilities.

TAU’s MPI wrapper interposition library helps us track the time spent in
each MPI call. It defines each MPI routine and invokes timer calls before and
after each name-shifted MPI interface call. It can access arguments that flow
through the MPI routines. So, it can maintain user defined events that track

2



the sizes of messages for each MPI call. We have extended this wrapper to use
a two level mapping involving the identifier of the MPI call and the size of the
message buffer as a key to access a timer that stores the performance data of
that call. By using these two fields, we can determine if a given message buffer
size and call have occured in the past. If not, a new timer is created with a name
that embeds the nature of the MPI call as well as the buffer size. Thus, we can
track the time spent in an MPI call using mapping techniques to characterize
the performance based on individual message sizes.

4 Performance Experimentation

The use of the TAU performance system involves the coordination of several
steps: instrumentation selection, measurement configuration, compilation and
linking with the application, application execution and generation of perfor-
mance data on the target platform, and performance data storage for analysis.
We describe the sequence of these steps as a performance experiment. We use
the term experiment generally to denote a specific choice of instrumentation
and measurement for a specific application code, but what this means exactly
should be left to the user. We define the term trial to mean an instance of an
experiment. A trial might either repeat an experiment run (e.g., to determine
performance variation) or modify an experiment run parameter (e.g., number of
processors), which would not represent such a significant change as to constitute
a new experiment.

The performance data gathered from executing the application is stored in
TAU’s performance database, PerfDMF [9] which is then queried by the Para-
Prof profile browser and other analysis tools such as PerfExplorer [10] for per-
formance data mining operations. The performance data stored in PerDMF is
multi-variate and multi-dimensional, both within single trials and experiments as
well as across experiments, applications, and platforms. PerfExplorer is a frame-
work for parallel performance data mining and knowledge discovery – finding
out new performance facts and relationships as the outcome of searching and
analyzing the stored performance data.

5 Conclusion

In the process of workload characterization for high performance parallel sys-
tems, it is important to have portable and configurable tools that can target the
different performance features and experiments of interest. Presently, the TAU
performance system has such capabilities for steps in this process, from common
event instrumentation, profile and trace measurements and data analysis to meet
workload characterization objectives. However, there are aspects of experiment
automation and knowledge discovery that require innovation and performance
technology and tools. Tool integration is also important. The full paper will de-
scribe in more detail how workload characterization requirements can be met by
TAU and other systems.

3



6 Acknowledgments

Research at the University of Oregon is sponsored by contracts (DE-FG02-
05ER25663, DE-FG02-05ER25680) from the MICS program of the U.S. Dept.
of Energy, Office of Science.

References

1. J. Borrill, J. Carter, L. Oliker, D. Skinner, R. Biswas, “Integrated Performance
Monitoring of a Cosmology Application on Leading HEC Platforms,” In Proc. of
International Conference on Parallel Processing (ICPP 2005), pp. 119–128, IEEE,
2005.

2. S. Shende, and A. Malony, “The TAU Parallel Performance System,” In Inter-
national Journal of High Performance Computing Applications, ACTS Collection
Special Issue, Summer 2006.

3. A. Malony, S. Shende, “Performance Technology for Complex Parallel and Dis-
tributed Systems,” In G. Kotsis, P. Kacsuk (eds.), Distributed and Parallel Sys-
tems, From Instruction Parallelism to Cluster Computing, Third Workshop on
Distributed and Parallel Systems (DAPSYS 2000), Kluwer, pp. 37–46, 2000.

4. A. D. Malony, S. Shende, and A. Morris, “Phase-Based Parallel Performance Pro-
filing,” In Proceedings of the PARCO 2005 conference, 2005.

5. S. Shende, “The Role of Instrumentation and Mapping in Performance Measure-
ment,” Ph.D. Dissertation, University of Oregon, August 2001.

6. S. Shende, and A. D. Malony, “Integration and Application of TAU in Parallel
Java Environments,” In Concurrency and Computation: Practice and Experience,
Volume 15(3-5), Mar-Apr 2003, Wiley, pp. 501–519, 2003.

7. R. Kufrin, “PerfSuite: An Accessible, Open Source Performance Analysis Envi-
ronment for Linux,” In Proceedings of the 6th International Conference on Linux
Clusters: The HPC Revolution 2005 (LCI-05), 2005.

8. K. Lindlan, J. Cuny, A. Malony, S. Shende, B. Mohr, R. Rivenburgh, C. Rasmussen,
“A Tool Framework for Static and Dynamic Analysis of Object-Oriented Software
with Templates,” SC 2000 conference, 2000.

9. K. A. Huck, A. D. Malony, R. Bell, and A. Morris, “Design and Implementation
of a Parallel Performance Data Management Framework,” In Proceedings of Inter-
national Conference on Parallel Processing (ICPP 2005), IEEE Computer Society,
2005.

10. K. A. Huck, and A. D. Malony, “PerfExplorer: A Performance Data Mining Frame-
work for Large-Scale Parallel Computing,” In Proceedings of SC 2005 conference,
ACM, 2005.

11. S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A Portable Program-
ming Interface for Performance Evaluation on Modern Processors,” International
Journal of High Performance Computing Applications, 14(3):189–204, Fall 2000.

12. B. Buck and J. Hollingsworth, “An API for Runtime Code Patching”, Journal of
High Performance Computing Applications, pp. 317–329, 14(4), 2000.

4


