Recent Developments to Enhance Scalability of
Sparse Direct Solvers

Xiaoye S. Li! and Laura Grigori?

! Lawrence Berkeley National Laboratory, MS 50F-1650
One Cyclotron Road, Berkeley, CA 94720, USA.
xsli@lbl.gov
2 INRIA Rennes
Campus Universitaire de Beaulieu, 35042 Rennes, France.
Laura.Grigori@irisa.fr

Abstract. We describe our recent efforts to improve scalability of the
sparse factorization algorithms. One such development is to exploit more
dense operations by switching to a full matrix representation towards a
later stage of factorization. Another effort is the parallelization of the
symbolic analysis algorithm which is used to determine the nonzero po-
sitions of the factored matrices. The first technique reduces amount of
communication and indirect addressing, while the second one improves
memory scalability of the solver.

1 Introduction

Sparse direct methods play a critical role in large scale computer simulations
of various disciplines because they are robust and reliable, especially for ill-
conditioned problems. However, it is a daunting task to implement sparse factor-
izations well on a distributed memory machine because of the need for managing
irregular data access and communication patterns, and a high communication-
to-computation ratio. Although a number of high quality parallel solvers have
been developed, such as SuperLU_DIST [4] and MUMPS[1], there has been no
demonstration that these solvers could scale to thousands of processors [2]. This
scaling bottleneck will be worsened as the architectural trends indicate that the
gap between the computation and the interconnect communication speeds will
become wider. This motivates us to develop algorithms that has lower commu-
nication demand and thus reduces the bandwidth and latency costs. Here, we
present two such ideas implemented in the SuperLU_DIST solver, which is based
on sparse LU factorization. Qur techniques are directly applicable to the other
sparse factorization algorithms such as Cholesky and QR.

2 Performance optimization via switch-to-dense

Sparse matrices are often represented in a compact format in which only the
nonzero values are stored. Auxiliary arrays are needed to store the position in-
dices (integer) of those nonzero entries. In a fully parallel, distributed factoriza-
tion algorithm, all these data structures are distributed on different processors.



2 X.S. Li and L. Grigori

During factorization, the nonzero values as well as their position indices must be
transferred among the processors. Compared to a dense factorization, the extra
costs include indirect addressing and many small-sized messages.

For many well structured matrices, such as those from FEM applications,
the unfactored trailing submatrix can become very dense towards a later stage
of factorization. It is then beneficial to represent the trailing block as a full
matrix, and continue factorization using dense operations. The benefits include
the elimination of indirect addressing and transferring of the indices, and use of
larger block size in BLAS calls. On uniprocessor platforms, Vuduc et al. showed
that this technique yielded up to 80% performance gain compared to a non-
blocked compressed row storage [5].

We have implmented a parallel switch-to-dense algorithm in SuperLU_DIST.
Since SuperLU_DIST already exploited the variable blocking scheme (i.e., su-
pernodes), the payoff here mainly comes from reduction of the messages and
larger block size. Depending on matrix-architecture combinations, we have ob-
served 30-40% performance gain even using a relatively small number of pro-
cessors (e.g., 32). An interesting research issue is the design of a good heuristic
to select the siwtch point that best trades off the extra computation with the
reduction of data movement.

3 Parallel symbolic factorization

The purpose of symbolic factorization is to compute the nonzero structure of
the factors L and U, which contains the original nonzero elements as well as the
filled elements. There has not been much motivation to parallelize this phase
for two reasons: (1) Computationally, this phase is much faster than numerical
factorization, and (2) The analysis involves combinatorial algorithms that are
difficult to parallelize. Most direct solvers choose to do this sequentially on one
processor, then broadcast the results to all processors. However, as larger and
larger problems are solved on the emerging petascale computers and as numerical
factorization has been made more and more scalable, symbolic factorization will
ultimately become a bottleneck both in memory and in time.

We are the first group tackling this difficult problem in SuperLU_DIST [3].
Our parallel algorithm uses a graph partitioning approach, applied to the graph
of A+ AT to partition the matrix in such a way that is good for sparsity
preservation as well as for parallel factorization. The partitioning yields a so-
called separator tree which represents the dependencies among the computations.
We use the separator tree to distribute the input matrix over the processors
using a block cyclic approach and a subtree to sub-processor mapping. The
parallel algorithm performs a bottom up traversal of the separator tree. With a
combination of right-looking and left-looking partial factorizations, the algorithm
obtains one column structure of L and one row structure of U at each step. Our
prototype code led to five-fold reduction in maximum per-processor memory
requirement. The already moderate serial runtime of the sequential algorithm is
often further reduced by the parallel algorithm.



Enhance Scalability of Sparse Direct Solvers 3

References

1. P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster. A fully asynchronous
multifrontal solver using distributed dynamic scheduling. SIAM Journal on Matriz
Analysis and Applications, 23(1):15-41, 2001.

2. Patrick R. Amestoy, lain S. Duff, Jean-Yves L’Excellent, and Xiaoye S. 1. Analysis
and comparison of two general sparse solvers for distributed memory computers.
ACM Transactions on Mathematical Software, 27(4):388-421, December 2001.

3. Laura Grigori, James W. Demmel, and Xiaoye S. Li. Parallel symbolic factorization
algorithm. Technical Report LBNL-59031, Lawrence Berkeley National Laboratory,
November 2005.

4. Xiaoye S. Li and James W. Demmel. SuperLU_DIST: A scalable distributed-memory
sparse direct solver for unsymmetric linear systems. ACM Trans. Mathematical
Software, 29(2):110-140, June 2003.

5. R. Vuduc, S. Kamil, J Hsu, R. Nishtala, J. W. Demmel, and K. A. Yelick. Automatic
performance tuning and analysis of sparse triangular solve. In Proceedings of the
ICS 2002: Workshop on Performation Optimizations via High-Level Languages and
Librates, New York, June 2002.



