
HPC for Large Scale CFD in Aircraft Design

Mattias Sillén

Saab Aerosystems, SE-581 88 Linköping, Sweden
Mattias.Sillen@saab.se

Abstract. In aircraft development the aerodynamic design is a long lead item.
To reduce the development time advanced flow modeling methods must be
used earlier than today. This is however limited by the current turn around time
for the simulations. To reduce the turn around time the computer platform is
very important. With the recent popularity of Linux–clusters it is now possible
to design cost efficient systems for a specific application. A flow solver is in-
vestigated for parallel performance on various clusters. Hardware and software
factors influencing the efficiency are analyzed and recommendations are made
for cost efficiency and peak performance.

1 Introduction

The current challenges in the aerospace field are to offer products that are both better
in performance and also faster and cheaper to produce. This forces aircraft designers
towards risk minimization and reduction in cost and time to market. The possibility to
influence life cycle cost is largest in the early design stages. Hence, the confidence in
the design during the early phases must increase compared to today. This requires
high fidelity flow simulations to enter the aerodynamic design process earlier than to-
day and also the use of more advanced flow modeling methods throughout the com-
plete design process. However, the turn around time for a simulation is a restricting
factor when deciding the physical modeling level in each design phase. Parallel proc-
essing is commonly used to reduce the turn around time and with the introduction of
PC-clusters in the mid-1990s cost-efficient supercomputing resources has become
available to a wider community. Larger and application specific computer systems are
now designed using cheap commodity components. The selection of node configura-
tion and interconnecting network are factors influencing the parallel performance.
Making the better choices will provide improved performance of the simulations and
offering a chance to improve the modeling capability or reducing the turn around
time. This paper discusses the impact of these choices on the application performance.
Implementation and load balancing issues are also investigated.

2 Physics and Parallel Implementation

This study is based on results obtained with the unstructured Navier–Stokes solver
Edge [1], developed at the Swedish Defence Research Establishment (FOI). The

solver has an edge based formulation that makes it possible to compute on any type of
mesh: structured, unstructured (with tetrahedral, hexahedra, prism or pyramids) or
hybrid. The flow equations are approximated on the computational mesh using a finite
volume approach and the spatial discretization is done either with a cell centred
scheme with added artificial dissipation or an upwind scheme, all second order accu-
rate. A Runge–Kutta method is used to integrate the flow equations forward in time.
The convergence to steady state is accelerated by an agglomeration multi grid
method, where the solutions on a sequence of coarser grids are combined to improve
the convergence rate.
Edge is parallelized by domain decomposition with MPI as the message passing sys-
tem. In the parallel implementation the same processor operates on all multi grid lev-
els of a partition. The load balancing is performed with the graph partitioner software
Metis [2] on the finest grid level. Control volumes on coarser levels are assigned to
the partition that contains the largest part of each individual control volume. This
minimizes the communication between processors when changing grid level but may
lead to load imbalance on coarser grid levels. An alternative is to perform load bal-
ancing on each grid level separately. This will increase the amount of communication
when changing grid level but will guarantee a better load balance also on coarser
grids levels. The communication pattern between the processors is predetermined at
run–time following the domain decomposition. The transfer of data is executed by
packing data from all boundary cells on a given processor that are to be sent to an-
other processor into a buffer that is sent as a single message. This standard approach
for the inter–processor communication has the effect of reducing latency overheads
by creating fewer and larger messages.

3 Cluster Performance Evaluation

To evaluate the code performance on different clusters configurations a representative
model from aerodynamic design is used. The present model was used for a study on
the aerodynamic effects during a store release from the Gripen fighter; see Fig. 1 for
the surface grid. The case is geometrically complex with detailed external stores
placed underneath the wings. A total of 3 million nodes corresponding to approxi-
mately 18 million tetrahedral volume elements are needed for a full span model to
adequately resolve the geometry and the inviscid flow features. A fully converged
steady–state solution can be achieved in about 500 multi grid cycles. Often a large
number of cases, typically 50-100, with different flow conditions and store locations
are computed. The present case is at transonic conditions with sideslip, Fig. 1 also
presents the pressure distribution on the upper side of the aircraft.
A fixed size problem is used as the focus is on industrial applications and the inten-
tion is to reproduce the situation in the design process. When the problem is parallel-
ized over more processors two parts will influence the performance results more than
the other. First, the computation to communication ratio will decrease as the partition-
ing introduces new internal boundaries between domains. Both the total amount of
data communicated as well as the number of messages increase. The communication
pattern becomes more fragmented and the mean message size decreases. Secondly,

when more processors are added the total amount of fast cache memory also increase.
This means that a larger part of the total problem will reside in the cache with a sub-
sequent performance gain. This is called cache effect and can result in a super linear
speedup, i.e. higher speedup numbers than number of processors.

Fig. 1. Transonic flow around the Gripen fighter, pressure distribution and surface mesh.

Three types of cluster configurations are evaluated. One with a commodity network
(Gigabit Ethernet) and two with high performance networks (SCI and Infiniband).
They differ both in latency, 30 µs compared to 3-7 µs, and bandwidth, 70 MB/s com-
pared to 300-600 MB/s.
On a SCI cluster with dual nodes an aggregated computational performance of 34
GFlops is reached on 256 processors. Using only one processor per node it delivers 21
GFlops on 128 processors, see Fig. 2.

 0 32 64 128 256
Number of processors

0

10

20

30

40

A
gg

re
ga

te
 G

Fl
op

/s

Dual nodes
Single nodes

 0 8 16 32 64 128 256
Number of processors

0.8

0.85

0.9

0.95

1

1.05

1.1

Pa
ra

lle
l E

ffi
ci

en
cy

Dual node
Single node

Fig. 2. Computational performance and parallel efficiency on dual and single node SCI cluster.

A notable observation is that when using nodes with dual processors, which may be
attractive from the point of view of cost–efficiency when using an expensive network
or from compactness aspects, the performance is reduced 20 % when two processors
have to share on a common node memory. The memory bandwidth is in this case not
up to the demands of the memory intensive application. The application demonstrates
a nearly linear parallel speed-up. This is also seen in the right graph in Fig. 2 where
the parallel efficiency stabilizes on 1.05 for the single processor node and 0.85 for the
dual node. From this we conclude that the network capacity is sufficient at least up to
256 processors.

Comparing performance from clusters with Gigabit Ethernet, SCI and Infiniband in
Fig. 3 demonstrates that the Gigabit Ethernet cluster rapidly looses in efficiency al-
ready after 8 processors. This is not the case for the other networks and the main rea-
son is the lower latency. Analyzing the communication behavior of the code reveals
that the communication pattern quickly gets latency bound. Already at 8 processors
the mean message transfer time is affected by latency. The much higher efficiency
values for the Infiniband configuration is caused by cache effects due the fixed size
problem. The nodes in this configuration are equipped with much larger 2nd level
cache than the other configurations.

0 16 32 64 128 256
Number of processors

0

10

20

30

40

G
flo

ps

Dunder Xeon 3.4 GHz Infiniband
Maxwell Xeon 2.4 GHz SCI
Maxwell Xeon 2.4 GHz GigE
Monolith Xeon 2.2 GHz SCI
Stokes P4 2.8 GHz GigE

 1 8 16 32 64
Number of processors

0.8

0.9

1

1.1

1.2

1.3

Ef
fic

ie
nc

y

Dunder 3.4 GHz Infiniband
Maxwell 2.4 GHz SCI
Maxwell Xeon 2.4 GHz GigE

Fig. 3. Computational performance and parallel efficiency on clusters with differing network.

From this investigation it can also be concluded that good load balancing can be
achieved with the software Metis. Up to 32 processors it is sufficient to balance only
the number of points in the partitions but above it also important to minimize and load
balance the communication load (boundary points) between the processors.

4 Conclusion

Different cluster configurations are evaluated for performance using an unstructured
flow solver in an industrial environment. High performance networks delivers excel-
lent speed-up for hundreds of processors. The low-cost alternative Gigabit Ethernet
performs well up to 100 processors and with single processor nodes it is the most
cost-efficient alternative. Dual processors loose performance due to memory bus satu-
ration but are still recommended together with high-end networks due to cost reasons.

References

1 Eliasson, P.: EDGE, a Navier-Stokes solver for unstructured grids. Proceedings of the Finite
Volumes for Complex Applications III, ISBN 1 9039 9634 1. (2003) 527-534

2 Karypis G. and Kumar V.: Analysis of Multilevel Graph Partitioning. Technical Report 95-
037. University of Minnesota. (1995)

