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Abstract. In this work we consider the numerical solution of a radia-
tive transfer equation for modeling the emission of photons in stellar
atmospheres. Mathematically, the problem is formulated in terms of a
weakly singular Fredholm integral equation defined on a Banach space.
Several computational approaches to solve the problem are discussed,
using direct and iterative strategies that are implemented in open source
packages.

1 Introduction

The emission of photons in stellar atmospheres can be modeled by a strongly
coupled system of nonlinear equations. In this work we consider a restriction of
the system by taking into account the temperature and pressure (see [2] and
[9] for details on the corresponding model). The resulting integral equation, a
radiative transfer problem, is then expressed as

Tϕ− zϕ = f, ϕ ∈ L1(I), I = [0, τ?], (1)

defined on a Banach space L1 (I) , where the integral operator T is defined as
(Tϕ)(τ) = $

2

∫ τ?

0
E1 (|τ − τ ′|) ϕ (τ ′) dτ ′. The variable τ represents the optical

depth, τ? is the optical thickness of a stellar atmosphere, z is in the resolvent
set of T and $ ∈ ]0, 1[ is the albedo (which is assumed to be constant in the
present work). The free term f is taken to be f(τ) = −1 if 0 ≤ τ ≤ τ∗/2, and
f(τ) = 0 if τ∗/2 < τ ≤ τ∗. The first exponential-integral function E1, defined by
E1(τ) =

∫∞
1

exp(−τµ)
µ dµ, τ > 0, has a logarithmic behavior in the neibhborhood

of 0. This function is part of the exponential-integral functions, which are defined
by Eν(τ) =

∫∞
1

exp(−τµ)
µν dµ, ν ≥ 1. For computational purposes, these functions

are evaluated according to [1].
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The numerical approach used to solve this problem is based on the projec-
tion of the integral operator into a finite dimensional subspace. By evaluating
the projected problem on a specific basis function we obtain a linear system of
equations whose coefficient matrix is banded, sparse and nonsymmetric. In order
to obtain a good accuracy it is necessary to use a large dimension for the space
where the problem is projected into. One possible approach is to compute an
approximate initial solution by projecting into a subspace of moderate (small)
size and then iteratively refine the solution by a Newton-type method. This ap-
proach has been adopted with success in [12]. Alternatively, one can discretize
the problem on a finer grid and then solve a large banded sparse algebraic linear
system. In this case, depending on the dimension of the problem, we can employ
either direct or iterative methods.

A large number of computational models and simulations that are carried out
on nowadays high-end computers benefit from the use of advanced and promptly
available software tools and libraries to achieve performance, scalability and
portability. In these lines, we are interested in investigating the tradeoffs and
capabilities implemented in several packages, in particular the ones that are
available in the DOE Advanced CompuTational Software (ACTS) Collection
[6], for the problem described above.

In the following sections, we outline the projection and matrix formulation
that we use to tackle the integral operator. Next, we give a brief description of
the ACTS Collection, and the tools that are pertinent to our problem. In our
presentation, as well as in the final version of the paper, we will discuss numerical
results and draw some conclusions.

2 Projection Phase and Matrix Formulation

Integral equations as the one described in the previous section are usually solved
by discretization; for instance by projection methods into a finite dimensional
subspace. The operator T is thus approximated by Tn, its projection into the
finite dimensional subspace Xn = Span{en,j , j = 1, . . . , n} (spanned by n lin-
early independent functions in X). In this case, we consider in Xn the basis
en = [en,1 . . . en,n] of piecewise constant functions on each subinterval of [0, τ∗]
determined by a grid of n+1 points 0 = τn,0 < τn,1 < . . . < τn,n = τ∗. For x ∈ X,

let 〈x, e∗n,j〉 = e∗n,j(x) =
1

hn,j

τn,j∫
τn,j−1

x(τ)dτ, where hn,j = τn,j − τn,j−1. We de-

fine Tnx = πnTx =
n∑

j=1

〈Tx, e∗n,j〉en,j , where πnx =
n∑

j=1

〈x, e∗n,j〉en,j = en〈x, e∗n〉.
Therefore, Tn is a bounded finite rank operator in X such that for all x ∈ X,

Tn =
n∑

j=1

〈·, `n,j〉en,j = en〈·, `n〉, where `n = T ∗e∗n ∈ X∗ (the adjoint space of

X).
The approximate problem (Tn − zI)ϕn = f is then solved by means of an

algebraic linear system of equations (An − zI)xn = bn, where An is a non
singular matrix of order n, and An(i, j) = 〈en,j , `n,i〉, bn(i) = 〈f, `n,i〉, xn(j) =
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〈ϕn, `n,j〉, (see [2]). Also, ϕn =
1
z

(∑n
j=1 xn(j)en,j − f

)
. In order to achieve an

approximate solution ϕn with good accuracy by this method it may be necessary
to use a very large n. To obtain the elements of the matrix An we compute

An(i, j) =
$

2hn,i

∫ τn,i

τn,i−1

∫ τ∗

0

E1 (|τ − τ ′|) en,j (τ ′) dτ ′dτ

=
$

2hn,i

∫ τn,i

τn,i−1

∫ τn,j

τn,j−1

E1 (|τ − τ ′|) dτ ′dτ

for i, j = 1, ..., n. Then, using the fact that E3(0) = 1/2, we obtain:

An(i, j) =





$
2hn,i

(−E3 (τn,i − τn,j) + E3 (τn,i−1 − τn,j)+
+E3 (τn,i − τn,j−1) + E3 (τn,i−1 − τn,j−1))

if i 6= j

$(1 + 1
hn,i

(−E3 (hn,i)− 1)) if i = j

.

3 ACTS: Tools of the Trade

The ACTS Collection consists of a set of computational tools for the solution of
common and important computational problems. The tools were developed in
various different laboratories and universities and have allowed a wide spectrum
of important computational problems to be solved to content [7]. We refer the
reader to the ACTS Information Center [8] for details about the tools available
in the Collection.

In this paper we are interested in solving equation (1) on a fine mesh. ACTS
tools include the packages ScaLAPACK, SuperLU, PETSc and Trilinos. ScaLA-
PACK provides routines for distributed-memory message-passing MIMD archi-
tectures, in particular routines for solving systems of linear equations, least
squares, eigenvalue problems and singular value problems. SuperLU is a library
for the direct solution of large, sparse, nonsymmetric systems of linear equations,
but that can also be applied efficiently to many symmetric systems. Working
precision iterative refinement subroutines are provided for improved backward
stability. PETSc provides a number of functionalities for the numerical solution
of PDEs that require solving large-scale, sparse linear and nonlinear systems of
equations. It includes nonlinear and linear equation solvers that employ a va-
riety of Newton techniques and Krylov subspace methods. Trilinos is one the
the last additions to ACTS. It targets the development of parallel solver algo-
rithms and libraries within an object-oriented software framework. It contains
self-contained packages, each one with its own set of requirements. One of this
packages is AztecOO, which superseded the widely used package Aztec.

In Equation (1), the optical thickness of the atmosphere τ? depends on the
frequency, typical values may be 0.001, 1, 1000 or 109. In [3], using an iterative
refinement approach and a Beowulf class cluster computer with 20 processors,
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the problem was solved for n = τ? = 105. To solve the local coarse grid linear
system the software used was based on preconditioned Krylov subspace methods
from SPARSKIT and on band block LU factorization from LAPACK. MPI was
used for the global computations and communications.

In order to solve the problem for larger values of τ? we must use advanced
software as well as high performance computers. Taking into account the char-
acteristics of the coefficient matrix we will focus on SuperLU and PETSc, for
the direct and iterative solution, respectively, of a large, sparse, nonsymmetric
system of linear equations. In the final version of the paper we will present re-
sults obtained on a SUN cluster with 24 2.4 Ghz dual-processors AMD Opteron
and on an IBM SP with 380 16-way computenotes.
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