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Abstract. Parallel global address space (PGAS) languages are a hot topic in sci-
entific computing research, as the computer science community seeks combined
hardware and software architectures that yield near-peak performance. However,
computational science is evolutionary rather than revolutionary in its software
development. Adoption of PGAS tools will require interoperation with conven-
tional language tools. We survey the integration of open-source PGAS languages,
including Titanium and UPC, with existing applications and language interoper-
ability tools. Their impact on source code, software build processes, and run-time
issues is presented for parallel application test cases.

1 Introduction

After years of struggle, and with no end to its difficulty in view, MPI has become the
standard for achieving parallel programming portability between the workstation clus-
ters accessible to most researchers and the time-shared high-end machines based on
non-commodity processors and networks. Better ways to specify programs on parallel
machines, beyond the reuse of specialized high-level application libraries, remain a sig-
nificant research topic, as evidenced by the focus on languages in programs such as the
United States multi-agency HPCS[1] effort.

As better commodity hardware and open-source networking software are expanding
to support one-sided communications (remote memory reads and writes), the simpler
parallel global address space (PGAS) programming model [2] has become a viable al-
ternative for portable programming. Current compiler development efforts by the open-
source and high-end-computing vendor communities have shown performance com-
parable or superior to MPI on microbenchmarks as well as full scientific application
frameworks [3]. Co-array FORTRAN [4, 5] is not readily available to the open-source
community yet.

Scientific computing is increasingly the province of multi-institutional software
teams instead of hero-programmers [6, 7]. For the most challenging multi-scale, multi-
domain applications MPI allows each submodel to have its own communicator object
and permits the submodel programmer to code in a logically isolated fashion. When
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the submodels are assembled into full simulations with any given submodel running
only on a subset of the total processors available to the overall model, collective MPI
operations are possible in the scope of the submodel. A similar facility is not generally
available in the current PGAS languages, though Cray Fortran provides a team concept
which may allow for submodel computations.

2 Integration

Hybrid codes will be the norm, rather than the exception, as computational science
simply cannot afford to throw out all the codes and start over when building multi-
domain, multi-discipinary simulations. Critical to forming these integrated codes is the
ability to combine libraries written in new languages with existing MPI-based libraries
and with existing libraries in conventional C, C++, and Fortran.

2.1 Integration with MPI applications

Next we examine a number of open-source PGAS languages and integration of objects
written in those languages into MPI-based programs.

MuPC The Michigan MPI+pthreads implementation of UPC is intended to be portable.
It does not claim to support mixing MPI and UPC calls in the user’s code. Its basic archi-
tecture is an application thread in which the user’s UPC code runs and a service thread
given entirely to managing data-exchanges through compiler-generated MPI calls.

Berkeley UPC The Berkeley UPC compiler permits cooperation with MPI code in a
barrier-sychronized way. The design is that at any given time, the entire parallel appli-
cation must be in UPC mode or MPI mode. This approach is feasible for many applica-
tions, but requires any higher-level driver controlling multiple libraries to know which
libraries use which communications underneath and coordinate changing modes.

Titanium We do not yet have the results for integrating Titanium and MPI at the appli-
cation level. We expect the results to be dependent on how the hidden back-end (gasnet)
layer is selected and implemented.

2.2 Integration with other languages

None of the PGAS language definitions presently includes explicit interoperability be-
tween the PGAS language compiler and conventional Java, C, C++, or FORTRAN com-
pilers. Generally, some provision is made in the PGAS implementations for interopera-
tion with C, but this feature is not presented as a stable interface for production coding
efforts. The Cray Co-Array Fortran compiler produces objects which can be integrated
with Cray UPC, C++, and other compilers in the X1 hardware environment, which does
not appear to include a Java to binary compiler.
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UPC Berkeley UPC and MuPC both generate conventional C code with added com-
munication directives from UPC sources. Thus it is possible to use libraries in other
conventional languages callable from C for purely local (thread-local) computations.
C++, Fortran, and GNU Java are thus integrable with libraries from these UPC im-
plementations. Berkeley UPC can also be initialized and used from a main() function
written in other languages, provided necessary command-line options are accessible.

Titanium As with Berkeley UPC, Titanium generates code for a conventional com-
piler with added gasnet directives to manage communication. At present, C and other C
callable languages are only accessible through Titanium’s equivalent of JNI (Java native
interface). Support for embedding the Titanium run-time in a larger application is not
documented.

3 Experiments on a hybrid application

The simulation model We present some results on a small problem run on a small
cluster. The problem is to solve a large set of coupled ordinary differential equations
combining a conventional solver with models expressed in the PGAS languages.

The source code results Integrating with Titanium requires source management gym-
nastics, particularly if one decides to adjust a method signature. This is typical of Java
integration in general, however. Integrating UPC and MPI codes may require judicious
use of copying.

The build results Building and linking are tricky, but no more so than with other
compilers under development. The bulk of the cost is in the up-front effort to install and
verify the experimental compilers on our Infiniband-based cluster.

The run-time results None of the compilers tested claim to be performant; rather they
are reference implementations of new languages. Nevertheless, the results are encour-
aging.

4 Conclusions and future work

PGAS languages are presently too early in development to use as the base for a multi-
domain production code with strong portability requirements. However, we are encour-
aged that the computer science community is moving in the correct direction. A key
feature that remains to be addressed by the PGAS language development community is
the ability of the module developer to code as if their module sees the whole machine
when in fact it is used on only a subset of the threads available; the MPI equivalent is the
developer who writes code using a given communicator object. Without this ability to
use subsets of the thousands of threads available on the worlds largest machines, multi-
domain simulations and optimization over bag-of-tasks style submodels will remain
outside the scope of PGAS-based software.
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