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Abstract. Modern high performance computer systems continue to increase in
size, speed, and architectural complexity. Tools to measure application perfor-
mance in these increasingly complex environments must also increase the rich-
ness of their measurements to provide insights into the increasingly intricate ways
in which software and hardware interact. This paper reports on initial efforts to
extend the widely used PAPI portable hardware counter interface to support the
monitoring of multiple measurement domains simultaneously. The paper gives
a description of the architectural changes needed to generalize the PAPI inter-
face, followed by examples of simultaneous measurements of processor hardware
counters, temperature sensors, and network counters for some benchmark codes
from the HPC Challenge suite.

1 Introduction

The Performance Application Programming Interface (PAPI) provides a portable inter-
face to the performance counters available on most modern microprocessors [1]. Devel-
opers can use these counters to understand exactly how their application is running on
the processor and use this information to determine the best way to optimize the appli-
cation. The PAPI interface has been extended to support monitoring of other domains
simultaneously with processor hardware counters. Such domains include, but are not
limited to, thermal sensors and network counters, examples of which will be presented
below. An important consideration in extending a widely accepted interface such as
PAPI is to make extensions in such a way as to preserve the original interface as much
as possible for the sake of backward compatibility.

As processor speeds and densities climb, the thermal properties of high performance
systems are becoming increasingly important. Such systems contain large numbers of
densely packed processors which require a great deal of electricity. Power and thermal
management issues are becoming critical to successful resource utilization [2, 3]. Stan-
dardized interfaces for accessing the thermal sensors are available, but may be difficult
to use for runtime power-performance adaptation [4]. Extending the PAPI interface to
simultaneously monitor processor metrics and thermal sensors can provide clues for
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correlating algorithmic activity with thermal system responses thus help in developing
appropriate workload distribution strategies.

Many network switches and network interface cards (NICs) contain counters that
can monitor various events related to performance and reliability. Possible events in-
clude checksum errors, dropped packets, and packets sent and received. Although the
set of network events is necessarily somewhat dependent on the underlying hardware,
extending PAPI to the network monitoring domain provides a portable way to ac-
cess native network events and allows correlation of network events with other do-
mains. Because communication in OS-bypass networks such as Myrinet is handled
asynchronously to the application, hardware monitoring, in addition to being low over-
head, may be the only way to obtain some important data about communication perfor-
mance.

Initial results reported in this paper illustrate how monitoring multiple measure-
ments domains simultaneously can provide insight into the mapping of an algorithm
onto the underlying hardware. Results of using the extended version of PAPI to si-
multaneously monitor processor counters, ACPI thermal sensors, and Myrinet network
counters while running the FFTE and HPL HPC Challenge benchmarks [5] on a AMD
Opteron Linux cluster are presented.

2 Extending PAPI to Multiple Substrates

The PAPI library was originally developed to address the problem of accessing the pro-
cessor hardware counters found on a diverse collection of modern microprocessors in a
portable manner [1]. Other system components besides the processor, such as the mem-
ory interface chips, network interface cards, and network switches, also have counters
that count various events related to system reliability and performance. Further, other
system health measurements, such as board level temperature sensors, are also avail-
able and useful to monitor in a portable manner. Unlike on-processor counters, the
off-processor counters and sensors usually measure events in a system-wide rather than
a process or thread-specific context. However, when an application has exclusive use
of a machine partition, or as in the case of single threaded operating systems on the
compute nodes of machines such as the IBM BlueGene or the Cray XT3, it may be pos-
sible to interpret such events in the context of the application. The current situation with
off-processor counters is similar to the situation that existed with on-processor counters
before PAPI. A number of different platform-specific interfaces exist, some of which
are poorly documented or not documented at all.

A number of software design issues became apparent in extending the PAPI in-
terface for multiple measurement domains. The PAPI library consists of two internal
layers: a large layer optimized for platform independence and portability; and a smaller
layer, called the substrate, containing the platform dependent code. By compiling and
linking the independent layer with a specific substrate , an instance of the PAPI library
could be produced for a specific platform and hardware architecture. At compile time
the substrate provided common definitions and data structure sizes to the independent
layer, and at link time it satisfied unresolved function references across the layers. Since
there was a one-to-one relationship between the independent layer and the substrate,



initialization and shutdown logic was straightforward, and control and query routines
could be directly implemented. In migrating to a multi-substrate model, this one-to-
one relationship was replaced with a one-many coupling between independent layer
and substrates, requiring that previous code dependencies and assumptions be carefully
identified and modified as necessary.

When linking multiple substrates into a common object library, each substrate ex-
poses a similar set of functionality to the independent layer. To avoid name-space col-
lisions in the linker, each substrate was modified to hide the function names by declar-
ing them as ’static’ inside the substrate code. The substrate then publishes a list of
these function pointers through a newly created and uniquely named initialization entry
point. The independent layer builds a table of function pointers at run-time by calling
this entry point. All later accesses to the substrate occur through this function table. In
this way, the independent layer can transparently manage initialization of and access
to multiple substrates. Our experiments have shown that the extra level of indirection
introduced by calls through a function pointer adds a negligible additional overhead to
the call time, even in time-critical routines such as reading counter values.

Countable events in PAPI are either preset events, defined uniformly across all ar-
chitectures, or native events, unique to a specific substrate. To date preset events have
only been defined for processor hardware counters, making all events on off-processor
substrates native events. By convention, an event to be counted is added to a collect
of events in an eventset, and eventsets are started, stopped, and read to produce event
count values. Each eventset in multi-substrate PAPI belongs to a specific substrate and
can only contain events associated with that substrate. Mechanisms have been added to
PAPI to search for events across the substrate space and identify the substrate to which
an event belongs. Multiple eventsets can be active simultaneously, as long as only one
eventset per substrate is invoked. Example substrates have been implemented in the de-
velopment version of PAPI for the ACPI temperature sensors and the Myrinet network
counters. An implementation of an Infiniband network substrate is underway.

3 Measurements of the HPC Challenge Benchmarks

The HPC Challenge suite is a set of scalable, computationally intensive benchmarks
with different memory access patterns that examine the performance of HPC archi-
tectures [5]. For our experiments, we chose two global kernel benchmarks, High Per-
formance Linpack (HPL) and FFT. We instrumented both benchmarks to gather to-
tal floating-point operations, temperature and packets sent and received through the
Myrinet network. With the extension made to PAPI for measuring multiple substrates
simultaneously, we were able to easily instrument the program by simply providing the
desired event names in PAPI calls. We ran our experiments on a 65-node AMD Opteron
cluster. Both benchmarks ran on eight nodes. We instrumented functions fft235 in FFT
and pdgesvK2 in HPL, and gathered data for each iteration that called these functions.

The measurements for the FFT benchmark on two of the nodes are shown in Figure
1. We can see the periodic nature of the computation and communication. Note the
difference in temperature between the two nodes.
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Fig. 1. FFT Results

4 Conclusions and Future Work

The widely accepted PAPI interface has been extended to support the simultaneous
monitoring of multiple measurement domains. This extension has been done in such
a way as to cause minimal disruption to the current user base while providing flexible
opportunities to gain new insights into application and system performance. Preliminary
measurements on HPC Challenge benchmark codes offer suggestions of the kinds of
measurements that might be made in the future with such a tool. Efforts are underway
to harden existing substrates in the network and temperature monitoring domains and
to implement new substrates. Further work is needed in automating the configuration
and build systems to more fully and flexibly accommodate a wide range of hardware
and substrate architectures.
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