
SyFi - An Element Matrix Factory, with

Emphasis on the Incompressible Navier-Stokes

Equations

Kent-Andre Mardal

Simula Research Laboratory, P.O. Box 134, NO-1325 Lysaker, Norway,
kent-and@simula.no,

WWW home page: http://www.simula.no/portal memberdata/kent-and

Abstract. SyFi is an open source C++ library for defining and using
advanced finite elements based on symbolic representations of polygonal
domains, degrees of freedom and polynomial spaces. Once the finite el-
ements and weak forms are defined, they are used to generate efficient
C/C++ code.

1 Introduction

SyFi [3] is an open source C++ library for defining finite elements and weak
forms as symbolic expressions. These expressions are then used to generate effi-
cient C/C++ code. It relies on the open source C++ library GiNaC [2], which
is a library for symbolic computations with a strong support for polynomials.
SyFi has Python bindings created by using SWIG [4].

In this short paper we will demonstrate its use by two examples. These
examples are explained further in the SyFi tutorial, which can be found on the
homepage [3].

The first example shows how a finite element, namely the Crouzeix-Raviart
element [1] is defined in Python using SyFi. The degrees of freedom for the
Crouzeix-Raviart element are the integral of the function over an edge,

Li(v) =

∫
ei

v ds,

where v = a0 + a1x + a2y. These degrees of freedom are then used to form a
linear system of equations,

Li(vj) = δij , (1)

which determine the basis functions of the Crouzeix-Raviart element. The fol-
lowing Python code demonstrates how this can be done with SyFi,

class CrouzeixRaviart(StandardFE):
def __init__(self):

StandardFE.__init__(self)

2

def compute_basis_functions(self):

create a polynomial space, which is a list with the following items
1. the polynom : a0 + a1*x + a2*y
2. the variables : a0, a1, a2
3. the basis : 1, x, y
polspace = pol(1,2,"a") # create a polynomial space

N = polspace.eval()[0] # fetch the polynomial
variables = polspace.eval()[1] # fetch the variables

for i in range(1,4): # run over all sides (1,2,3)
line = triangle.line(i) # fetch the side/line
dofi = line.integrate(toex(N)) # the dof as a line integral
self.dofs.append(dofi) # append to the list of dofs

#create the linear system of equations
for i in range(1,4):
equations = []
for j in range(1,4):

equations.append(self.dofs[j-1].eval() == dirac(i,j))
sub = lsolve(equations, variables) # solve the system
Ni = N.subs(sub) # substitute a0, a1, a2
self.Ns.append(toex(Ni)); # append to the basisfunc list

As can be seen below, it is straightforward to used this Python element to
generate C code for the basis functions, their derivatives and the corresponding
degrees of freedom:

triangle = ReferenceTriangle()
fe = CrouzeixRaviart()
fe.set(triangle)
fe.compute_basis_functions()
for i in range(1,fe.nbf()+1):
print "N(%d) = "%i,fe.N(i).eval().printc() # print N_i in C
print "dN(%d) = "%i,grad(fe.N(i)).eval().printc() # print grad in C
print "dof(%d)= "%i,fe.dof(i).eval().printc() # print dof_i in C

The second example shows the (symbolic) computation of the Jacobian of a
nonlinear convection-diffusion equation,

(u · ∇)u − ∆u = f

The equation on weak form is given by:

F(u,v) =

∫
Ω

(u · ∇u) · v dx +

∫
Ω

∇u : ∇v dx −

∫
Ω

f · v dx.

By letting u = û =
∑

j ujNj and v = Ni, where Ni and Nj are finite element
basis functions and uj the corresponding degrees of freedom, we can compute
the Jacobian to be used in a finite element method,

Jij =
∂F (û,Ni)

∂uj

.

The following code shows how this can be done with SyFi. We emphasize that all
of the computations are done symbolically, simply by differentiating functions
of polynomials. Therefore, the code below works for any finite element.

3

void compute_nlconvdiff_element_matrix(
FE& fe,
matrix& A)

{
Polygon& domain = fe.getPolygon();

// create the local U field: U = sum_k u_k N_k
ex UU = matrix(2,1,lst(0,0));
ex ujs = symbolic_matrix(1,fe.nbf(), "u");
for (int k=1; k<= fe.nbf(); k++) {

UU +=ujs.op(k-1)*fe.N(k); // U += u_k N_k
}

//Get U represented as a matrix
matrix U = ex_to<matrix>(UU.evalm());

for (int i=1; i<= fe.nbf() ; i++) {

// First: the diffusion term in Fi
ex gradU = grad(U); // compute the gradient
ex Fi_diffusion = inner(gradU, grad(fe.N(i))); // grad(U)*grad(Ni)

// Second: the convection term in Fi
ex UgradU = (U.transpose()*gradU).evalm(); // compute U*grad(U)
ex Fi_convection = inner(UgradU, fe.N(i), true); // compute U*grad(U)*Ni

// add together terms for convection and diffusion
ex Fi = Fi_convection + Fi_diffusion;

// Loop over all uj and differentiate Fi with respect
// to uj to get the Jacobian Jij
for (int j=1; j<= fe.nbf() ; j++) {
symbol uj = ex_to<symbol>(ujs[j-1]); // cast uj to a symbol
ex Jij = Fi.diff(uj,1); // differentiate Fi wrt. uj
A[i][j] = domain.integrate(Jij); // intergrate the Jacobian Jij

}
}

}

At present continuous and discontinuous Lagrangian elements, of arbitrary
order in both 2D and 3D have been implemented in SyFi. Hence, Taylor-Hood
elements and P

d
n − Pn−2 elements are readily available. The Crouzeix-Raviart

element has also been implemented in 2D and 3D. In addition element matrices
for Stokes problems as well as the above described nonlinear convection-diffusion
equation have been implemented. Currently, we are coupling the SyFi framework
with the Trilinos package [5] to solve the linear system of equations obtained by
SyFi.

References

1. M. Crouzeix and P.A. Raviart, Conforming and non–conforming finite element
methods for solving the stationary Stokes equations, RAIRO Anal. Numér. 7 (1973),
pp. 33–76.

2. GiNaC - is not a CAS, http://www.ginac.de

4

3. SyFi - Symbolic Finite Elements, http://syfi.sf.net
4. SWIG - Simplified Wrapper and Interface Generator, http://www.swig.org
5. Trilinos, http://software.sandia.gov/trilinos/

