
Search of Performance Inefficiencies in Message Passing
Applications with KappaPI 2 Tool

Josep Jorba1, Tomas Margalef2, and Emilio Luque2

1 Universitat Oberta de Catalunya (UOC),
Estudis d’Informatica i Multimedia.

Barcelona, Spain,
jjorbae@uoc.edu

2 Universitat Autonoma de Barcelona (UAB),
Computer Architecture and Operating Systems Department,

08193 Bellaterra, Spain,
tomas.margalef, emilio.luque@uab.es

Abstract. Performance is a crucial issue of parallel/distributed applications. One
kind of useful tools, in this context, are the automatic performance analysis tools,
that help developers in some of the phases of the performance tuning process.
KappaPI 2 is an automatic performance tool, with open knowledge about typical
inefficiencies in message passing applications, and it is able to detect and analyze
these inefficiencies, and then make suggestions to the developer about how to
improve their application behavior.

1 Introduction

Designers and developers of parallel/distributed applications, expect that their applica-
tions reach high performance indexes to meet the expectations of HPC. In this context,
performance analysis is a crucial issue.

However, there is a lack of useful tools, and the most popular approach to carry out
the performance analysis is the use of visualization tools [1, 2] to show several indexes
obtained from the execution of the application. The analysis of these views is a difficult
and time consuming task that requires a high degree of expertise from the developer.

To overcome this situation, more user-friendly tools are needed. Such tools should
provide a step ahead from the visualization technics. To fullfill these requeriments, some
automatic performance analysis tools have been developed, like Scalea [4] and Expert
[3]. These tools take data from the execution of the application, in form of profiling
or tracing data, and try to detect performance bootlnecks in the application. To iden-
tify these bottlenecks these tools uses certain performance property specification, for
example, derived from the APART specification Language (ASL) [5].

KappaPI 2 is an automatic performance analysis tool that extends these ideas, en-
hancing the use of current knowledge of performance inefficiencies in the message pass-
ing environments, and providing support in the performance analysis process in form
of recommendations directed to the developer. The application developer can use the
recommendations provided by the tool to improve the performance of the applications.

2

2 KappaPI 2

In KappaPI 2 [8] the main goal is to provide useful hints to the application developer, to
enhance the performance of their applications. The tool uses a series of specifications
or performance knowledge as input data. This knowledge represents a set of parallel
performance bottlenecks that can be found in the execution of parallel/distributed ap-
plications on message passing environments (MPI and PVM in our case).

The main goal of the tool architecture is to provide the mechanisms to support an
automatic performance analysis tool that has the following features:

– Performance knowledge specification: Independent specification mechanisms to in-
troduce new performance inefficiencies.

– Independence from background message passing system: The tool builds abstract
entities that are independent from the particular trace file format or the message
passing primitives.

– The performance inefficiency detection engine must read the performance knowl-
edge specification and classify the inefficiens found in the trace.

– Relate inefficiencies to the source code of the application: a set of quick parsers to
search for dependences in the source code must be included to determine why the
inefficiency appears.

Pattern
Matching
Engine

Source
Analysis

Hints
to users

List of
Detected
Problems

Evaluator
Engine

Problem
causes

Trace

Problem
specs

Problem

Analysis

specs

Source
Code

Hints
specs

Analysis specs

Fig. 1. Module architecture of the KappaPI 2

In KappaPI 2 (figure 1), the first step is to execute the application under the control
of a tracing tool (for PVM or MPI environments) that captures all the events related
to the message passing primitives that occur while running the application. Our tool
uses the trace and performance inefficiency knowledge base as inputs to detect the per-
formance bottleneck patterns defined from a structural point of view. After, it sorts the
found performance bottlenecks according to certain indexes. It carries out a bottleneck

3

cause analysis, based on the application source code analysis, and finally provides a set
of recommendations to the user, indicating how to modify the source code to overcome
the detected bottlenecks.

3 Related work

Several automatic performance analysis tools can be related to KappaPI 2, including
the first version of KappaPI [6], Scalea [4], Expert [3].

In the first version of KappaPI, detection of performance bottlenecks focused on
idle intervals affecting the largest number of processes. Processor efficiency was used
to measure execution quality, and idle processor intervals represented performance inef-
ficiencies. The knowledge about the performance inefficiencies was a closed hard coded
set of bottlenecks, and no mechanisms were provided to add new bottleneck specifica-
tions. Similar limitation also affects root cause analysis.

Scalea [4] uses an interface called JavaPSL API to specify the performance proper-
ties [5], using a Java syntax in a form of classes for each problem. The user can specify
new properties (by adding new Java classes) without changing the implementation of
the tool’s search phase.

In Expert [3, 7], the specification of the performance properties are realised using
script languages based on internal APIs (for trace manipulation, and information re-
trieval related to the events). Expert tries to answer the question of where the appli-
cation spends time. It summarizes the indexes of each problem found and accumulate
their times to compare its impact to the total application execution time. Main differ-
ences between KappaPI 2 and Expert are: a) Bootleneck specification from a structural
point of view, meanwhile Expert uses functional programming (in a shell script form).
b) Expert specification is based on some trace API, that the user needs to know in order
to specify the bottleneck property; in Kappa PI 2 the use of the trace is only internal.
KappaPI 2 also offers abstraction mechanisms from trace formats and environments:
we can use different tracers in different environments (PVM, MPI). c) Expert does not
offer direct techniques for source code analysis, or any kind of recommendations to
help the developer to improve the application. d) In Kappa PI 2 an additional level of
specification is added for bottleneck analysis causes. The user can provide knowledge
about bottlenecks and their analysis process.

4 KappaPI 2 operation

KappaPI 2 needs to read the knowledge about performance inefficiencies, by means of
structural bottleneck specification. From these specifications, a decission tree is build
to detect and classify the performance bottlenecks.

In the analysis process, KappaPI 2 has a post-mortem approach. First, it is necessary
to execute the application, with a tracer tool (adapted to the environment used, MPI or
PVM), that collects all the events related to the message passing primitives that occurs
during the application execution. The stored trace is used as input for the detection
phase, based on the matching of the bottleneck structural specification between the
specified events and their presence in the application trace.

4

Once a bottleneck is detected, its information is captured and stored as a match in
a table of inefficiencies, which is used as classification scheme based on indexes of
presence and importance of the bottleneck. When the detection phase has finished, a
table of main problems is provided.

These bottlenecks, with information related to source code (where the events are
produced, in form: which calls, in which file and line number in source code), are anal-
ysed to determine the causes of their occurrance. In this point a second level of specifi-
cation is used. It provides information about the possible cases of the bottlenecks, based
on a description of preconditions to test for determining which exact case of the match
of the problem have been found. These conditions require to analyse some source code,
for example to determine data dependences, or information about parameters in use, or
if it is feasible to make some code transformations.

The source analysis process is done by means of structural source code represen-
tation, based in a XML like representation. We can analyze some blocks of code, and
determine their structure, or see information about symbols, or detect the context of
a message passing call (in a loop, conditional, ...). This representation is used to get
information of a particular point of source code (point of interest in case analysis). Af-
terwards, some quick parsers (for small dedicated tasks) detect some of the conditions
of interest for the use case evaluated.

Finally, once a case is found the tool provides a recommended action to be done on
the source code to overcome or eliminate the found bottlenecks.

We have carried out a series of study cases, with different kind of tests, for the
validation of the architectural phases of the tool: detection, classification, cause analysis
(with extra source code analysis), and final recomenadtions for the developer.

Different tests are made using standard synthetic code, some performance avalaible
benchmarks, and some real scientific applications, in terms of validation of analysis
phases of the tool, and final results of improvement of the application performance.

References
1. W.E. Nagel, A. Arnold, M. Weber, H.C. Hoppe, K. Solchenbach: VAMPIR: Visualization and

Analysis of MPI Resources. Supercomputer 63, vol XII, number 1, Jan. 1996.
2. L. De Rose, Y. Zhang, D.A. Reed: SvPablo: A Multilanguage Performance Analysis system.

Lecture Notes in Computer Science, 1469:352-99, 1998.
3. F. Wolf, B. Mohr, J. Dongarra, S Moore: Efficient Pattern Search in Large Traces Through

Succesive Refinement. Euro-Par 2004, LNCS 3149, 2004.
4. HL. Truong, T. Fahringer, G. Madsen, AD. Malony, HMoritsch, S. Shende: On using

SCALEA for Performance Analysis of Distributed and Parall el Programs. Supercomputing
2001 Conference (SC2001), Denver, Colorado, USA. November 10-16,2001

5. T. Fahringer, M. Gerndt, G. Riley, J. Larsson: Specification of Performance problems in MPI
Programs with ASL. Proceedings of ICPP, pp. 51-58. 2000.

6. A. Espinosa, T. Margalef, E. Luque: Automatic Performance Analysis of PVM applications.
EuroPVM/MPI 2000, LNCS 1908, pp. 47-55. 2000.

7. F. Wolf, B. Mohr: Automatic Performance Analysis of MPI Applications Based on Event
Traces. In EuroPar 2000, LNCS, 1900, pp123-132, 2000.

8. J. Jorba, T. Margalef, E. Luque: Automatic Performance Analysis of Message Passing Appli-
cations using the KappaPI 2 tool. EuroPVM/MPI 2005, LNCS 3666, September 2005.

