A Platform for Scalable Parallel Trace Analysis

Markus Geimet, Felix Wolf', Andreas Kniipfer, Bernd Moht, and Brian Wylié

1John von Neumann Institute for Computing (NIC)
FzJ, 52425 Jilich, Germany
{mgeiner, f.wolf, b.mohr, b.wlie}@z-juelich.de

2ZIH, TU Dresden, Germany
andr eas. knuepf er @ u- dr esden. de

Abstract Automatic trace analysis is an effective method of idemigycomplex
performance phenomena in parallel applications. To siynfilie development of
complex trace-analysis algorithms, tB@rL library interface offers high-level
access to individual events contained in a global traceHitevever, as the size
of parallel systems grows further and the number of progsss®ed by individual
applications is continuously raised, the traditional aagh of analyzing a single
global trace file becomes increasingly constrained by tlgelaumber of events.
To enable scalable trace analysis, we present a new destyis éfiterface that
accesses multiple local trace files in parallel while offgnneans to conveniently
exchange events between processes. This article destirébesodified view of
the trace data as well as related programming abstractimvided by the new
interface and discusses its application in performancl/sisa

1 Introduction

Event tracing is a well-accepted technique for post-monpemiormance analysis of
parallel applications. Time-stamped events, such asiagterfunction or sending a
message, are recorded at runtime and analyzed afterwatiighei help of software
tools. For example, graphical trace browsers, such&®IR [1], allow the fine-grained
investigation of parallel performance behavior using amable time-line display.

However, in view of the large amounts of data usually gemeeraautomatic off-
line trace analyzers, such agPERT[2], can provide the user with relevant informa-
tion more quickly by automatically searching traces for pter patterns of inefficient
behavior and quantifying their significance. In additiorb&ing faster than a manual
analysis performed using the aforementioned trace bremses approach is also guar-
anteed to cover the entire event trace and not to miss argrpatistances.

To simplify the analysis logic incorporated @XPERT, it has been designed on top
of EARL [3], a high-level interface to access individual eventsiflmsingle global trace
file. As opposed to a low-level interface that allows readimgjvidual event records
only in a sequential mannezARL offers random access to individual events. Not to
restrict trace-file sizesARL assumes access locality allowing it to buffer the context of
recent accesses in main memory while reading events outsgleontext from file. In

addition, to support the identification of pattern congfitts,EARL provides abstrac-

tions representing execution state information at the tifha given event as well as
links between related events. Unfortunately, sequentelialyzing a single and po-
tentially large global trace file does not scale to applarsirunning on thousands of
processors. Even if access locality is exploited, the amoumain memory might not

be sufficient to store the current working set of events. Moeg, the amount of trace
data might not even fit into a single file, which already sutgEsperform the analysis
in a more distributed fashion.

To facilitate scalable trace analysis also for very largaeasys and applications run-
ning on them, we have designed a parallel trace-data icteHBARL as a building
block for parallel trace analysis algorithms and tools.His tarticle, we describe the
modified view of the trace data in combination with programgnabstractions repre-
senting this view. We start our discussion with a review d¢diterd work in Section 2,
followed by a description of the serial interface in Sectdoin Section 4, we detail the
programming abstractions offered by the new parallel fater. Finally, in Section 5,
we outline the intended usage as a framework for implemguatirtomatic parallel trace
analysis.

2 Reated Work

A number of approaches address scalable trace analysidrarhe-basedLoG trace-
data format supports scalable visualization. Dynamicqukicity detection in Opemp
applications prevents redundant performance behavior freing recorded in the first
place. Important to our particular approach has been thehlited trace analysis and
visualization serveyNG, which already provides parallel trace access mechanams,
beit targeting a “serial” human client in front of a grapHittace browser as opposed
to fully automatic and parallel trace analysis. A tree-ldas@in memory data structure
for event traces calledocG allows potentially lossy compression of trace data while
observing previously specified deviation bounds. We arsidening e cGs as an alter-
nate base data structure for our parallel analysis platfdrmore detailed description
of the above approaches including references can be foagl in

3 EARL

EARL (Event Analysis and Recognition Library) is a C++ classdifyrthat offers a
high-level interface to access event tracesvef, Opemp, or SHMEM applications.
In the context ofEARL, an event trace is a single global trace file that includestsve
from all processes or threads in chronological order. Thes issgiven random access
to individual events, plus execution state informatiorhattime of a given event in the
form of event sets describing a particular aspect of thistauch state information
can describe the current call stack, messages in tranditeoprogress of collective
operations. Based on this state informatiearL also provides links between related
events, which are called pointer attributes, for examplallbw the easy location of the
message send event belonging to a given receive event.

The intended trace analysis process supportegaArL is a sequential traversal of
the event trace from beginning to end. As the analysis pesgieEARL updates the

execution-state information and calculates pointerkattes for the most recent event
being read, which always point backwards to avoid a costikdahead. To make the
trace analysis more efficierARL buffers the context of the current event so that events
within this context can be accessed from main memory. Thsestincludes the last
events (i.e., the history) plus all related executionesitafiormation. To avoid rereading
from the very beginning in the case that an event outsidedhtegt is requeste@ARL
stores the complete execution state information in regatarvals in so-called book-
marks. The history size and the bookmark distance can bélffeoonfigured. However,
since these parameters have a significant performance imjtaaespect to memory
consumption and the number of required file accesses andditian, these effects are
highly application dependent, finding an optimal choice afgmeters is a non-trivial
task.

4 Parallel Accessto Trace Data

In our new parallel design, which we c&lEARL, we no longer assume a single global
trace file. InsteackEARL operates on multiple process-local trace files. In additboe
set of global definitions for static program entities, sushcade regions, is required
in a separate file. Along the same lines, the parallel armiyself will be a parallel
program using as margpPus as have been allocated for the target application. In prac-
tice, we intend to perform the parallel analysis right after target application finishes
as part of the same job execution. For simplicity, our ihN&rsion will support only
single-threadedipPi-1 applications, but we plan to extend our approach to atern
programming models, such as Opgnor MPI1-2.

Every analysis process has access to one local trace rafgd$y a C++ clasko-
cal Tr ace and to the global definitions represented by another casbal Def s.
We assume that the internal representation of a local teasmaller than the memory
available to a single process on a parallel machine so tleaemiire local trace can
be kept in main memory, relaxing the aforementioned lirdtat resulting from strict
forward analysis. That iREARL provides performance-transparent random access to
individual events plus local execution state informatiBointer attributes can point
backward and forward, but not to non-local events. Eventsheaaccessed through a
classEvent which provides access to all event attributes. To navidgateugh the lo-
cal trace, the class also exposes iterator semantics laleaitarough simpler ev()
andnext () methods and pointer attributes for more sophisticatedstaslch as call
stack traversal. In this way, it is possible, for examplegiach enclosing enter and exit
events of a given communication event to determine the wuratf the entire com-
munication operation. The return values of pointer atteéblare always nevent
(iterator) objects that can be subject to further navigatiperations.

To facilitate the cross-process analysis of communicgiaiternsPEARL provides
means to conveniently exchange one or more events betweeegses. Remote events
received from other processes are represented by aRéaast eEvent , which pro-
vides identical functionality but without iterator semiast There are generally two
modes of exchanging events: point-to-point and collecfant-to-point exchange al-
lows a remote event to be created with arguments specifiimgdurce process, a com-
municator, and a message tag. The source process has te imaktresponding send

method on the local event object to be transferred. The exgghaf multiple events can
be accomplished in one batch by collecting local events whgect of clasE€vent Set

on the sender’s side and instantiating an object of dRest eEvent Set on the re-
ceiver’s side by supplying message parameters to the cmtstrEach event in the set
is identified by a numeric identifier that can be used to asaigiie to each member of
the set, for example, to distinguish a particular constite¢ a pattern. Collective event
exchange has the form of a reduce operation that identifeegdhliest or latest (min
or max) event across a number of processes and instantiaasesponding remote
event at all participating processes. We are currentlystigating methods to optimize
event exchange in cases where the exact number and typesné év be transferred is
difficult to obtain or completely unknown at the receiveites

5 A Framework for Parallel Trace Analysis

The strength oEARL has been the provision of truly parallel abstractions thawethe
user to access higher-level events, such as messages &uiveloperations, which
requires the ability to match corresponding events acromsegses. In the case of our
parallel interface, this is more difficult, since matchingtirs costly communication. To
minimize this communication, the intended usage®BARL is that of areplay-based
analysis. The central idea behind replay-based analysisalyzing a communication
operation using an operation of the same type. For exanmpéedlyze a point-to-point
message, the related events are exchanged in point-tbfpode. To accomplish this,
the new analysis process traverses local traces in paaalieineets at the synchroniza-
tion points of the target application by replaying the arglicommunication. We are
currently investigating the scalability properties of teelay in comparison to those of
the target application.

References

1. Nagel, W., Weber, M., Hoppe, H.C., Solchenbach, K.: VARPVisualization and Analysis
of MPI Resources. Supercompufd; X1 (1996) 69-80

2. Wolf, F., Mohr, B., Dongarra, J., Moore, S.: Efficient Ratt Search in Large Traces through
Successive Refinement. In: Proc. of the European Confemmé&arallel Computing (Euro-
Par), Pisa, Italy, Springer (2004)

3. Wolf, F., Mohr, B.: EARL - A Programmable and Extensibleolidt for Analyzing Event
Traces of Message Passing Programs. In: Proc. of the 7tmétitkenal Conference on High
Performance Computing and Networking Europe (HPCN). Vaurf93 of Lecture Notes in
Computer Science., Amsterdam, The Netherlands, Spridg&9) 503-512

4. Wolf, F., Freitag, F., Mohr, B., Moore, S., Wylie, B.: Ladvent Traces in Parallel Perfor-
mance Analysis. In: Proc. of the 8th Workshop 'Parallel 8y and Algorithms’ (PASA).
Lecture Notes in Informatics, Frankfurt/Main, Germanysélschaft fur Informatik (2006)

