
A Platform for Scalable Parallel Trace Analysis

Markus Geimer1, Felix Wolf1, Andreas Knüpfer2, Bernd Mohr1, and Brian Wylie1

1John von Neumann Institute for Computing (NIC)
FZJ, 52425 Jülich, Germany

{m.geimer, f.wolf, b.mohr, b.wylie}@fz-juelich.de

2ZIH, TU Dresden, Germany
andreas.knuepfer@tu-dresden.de

Abstract Automatic trace analysis is an effective method of identifying complex
performance phenomena in parallel applications. To simplify the development of
complex trace-analysis algorithms, theEARL library interface offers high-level
access to individual events contained in a global trace file.However, as the size
of parallel systems grows further and the number of processors used by individual
applications is continuously raised, the traditional approach of analyzing a single
global trace file becomes increasingly constrained by the large number of events.
To enable scalable trace analysis, we present a new design ofthis interface that
accesses multiple local trace files in parallel while offering means to conveniently
exchange events between processes. This article describesthe modified view of
the trace data as well as related programming abstractions provided by the new
interface and discusses its application in performance analysis.

1 Introduction

Event tracing is a well-accepted technique for post-mortemperformance analysis of
parallel applications. Time-stamped events, such as entering a function or sending a
message, are recorded at runtime and analyzed afterwards with the help of software
tools. For example, graphical trace browsers, such asVAMPIR [1], allow the fine-grained
investigation of parallel performance behavior using a zoomable time-line display.

However, in view of the large amounts of data usually generated, automatic off-
line trace analyzers, such asEXPERT [2], can provide the user with relevant informa-
tion more quickly by automatically searching traces for complex patterns of inefficient
behavior and quantifying their significance. In addition tobeing faster than a manual
analysis performed using the aforementioned trace browsers, this approach is also guar-
anteed to cover the entire event trace and not to miss any pattern instances.

To simplify the analysis logic incorporated inEXPERT, it has been designed on top
of EARL [3], a high-level interface to access individual events from a single global trace
file. As opposed to a low-level interface that allows readingindividual event records
only in a sequential manner,EARL offers random access to individual events. Not to
restrict trace-file size,EARL assumes access locality allowing it to buffer the context of
recent accesses in main memory while reading events outsidethis context from file. In



addition, to support the identification of pattern constituents,EARL provides abstrac-
tions representing execution state information at the timeof a given event as well as
links between related events. Unfortunately, sequentially analyzing a single and po-
tentially large global trace file does not scale to applications running on thousands of
processors. Even if access locality is exploited, the amount of main memory might not
be sufficient to store the current working set of events. Moreover, the amount of trace
data might not even fit into a single file, which already suggests to perform the analysis
in a more distributed fashion.

To facilitate scalable trace analysis also for very large systems and applications run-
ning on them, we have designed a parallel trace-data interface PEARL as a building
block for parallel trace analysis algorithms and tools. In this article, we describe the
modified view of the trace data in combination with programming abstractions repre-
senting this view. We start our discussion with a review of related work in Section 2,
followed by a description of the serial interface in Section3. In Section 4, we detail the
programming abstractions offered by the new parallel interface. Finally, in Section 5,
we outline the intended usage as a framework for implementing automatic parallel trace
analysis.

2 Related Work

A number of approaches address scalable trace analysis: Theframe-basedSLOG trace-
data format supports scalable visualization. Dynamic periodicity detection in OpenMP

applications prevents redundant performance behavior from being recorded in the first
place. Important to our particular approach has been the distributed trace analysis and
visualization serverVNG, which already provides parallel trace access mechanisms,al-
beit targeting a “serial” human client in front of a graphical trace browser as opposed
to fully automatic and parallel trace analysis. A tree-based main memory data structure
for event traces called cCCG allows potentially lossy compression of trace data while
observing previously specified deviation bounds. We are considering cCCGs as an alter-
nate base data structure for our parallel analysis platform. A more detailed description
of the above approaches including references can be found in[4].

3 EARL

EARL (Event Analysis and Recognition Library) is a C++ class library that offers a
high-level interface to access event traces ofMPI, OpenMP, or SHMEM applications.
In the context ofEARL, an event trace is a single global trace file that includes events
from all processes or threads in chronological order. The user is given random access
to individual events, plus execution state information at the time of a given event in the
form of event sets describing a particular aspect of this state. Such state information
can describe the current call stack, messages in transit, orthe progress of collective
operations. Based on this state information,EARL also provides links between related
events, which are called pointer attributes, for example, to allow the easy location of the
message send event belonging to a given receive event.

The intended trace analysis process supported byEARL is a sequential traversal of
the event trace from beginning to end. As the analysis progresses,EARL updates the



execution-state information and calculates pointer attributes for the most recent event
being read, which always point backwards to avoid a costly look-ahead. To make the
trace analysis more efficient,EARL buffers the context of the current event so that events
within this context can be accessed from main memory. This context includes the lastn
events (i.e., the history) plus all related execution-state information. To avoid rereading
from the very beginning in the case that an event outside the context is requested,EARL

stores the complete execution state information in regularintervals in so-called book-
marks. The history size and the bookmark distance can be flexibly configured. However,
since these parameters have a significant performance impact with respect to memory
consumption and the number of required file accesses and, in addition, these effects are
highly application dependent, finding an optimal choice of parameters is a non-trivial
task.

4 Parallel Access to Trace Data

In our new parallel design, which we callPEARL, we no longer assume a single global
trace file. Instead,PEARL operates on multiple process-local trace files. In addition, one
set of global definitions for static program entities, such as code regions, is required
in a separate file. Along the same lines, the parallel analysis itself will be a parallel
program using as manyCPUs as have been allocated for the target application. In prac-
tice, we intend to perform the parallel analysis right afterthe target application finishes
as part of the same job execution. For simplicity, our initial version will support only
single-threadedMPI-1 applications, but we plan to extend our approach to alternate
programming models, such as OpenMP or MPI-2.

Every analysis process has access to one local trace represented by a C++ classLo-
calTrace and to the global definitions represented by another classGlobalDefs.
We assume that the internal representation of a local trace is smaller than the memory
available to a single process on a parallel machine so that the entire local trace can
be kept in main memory, relaxing the aforementioned limitations resulting from strict
forward analysis. That is,PEARL provides performance-transparent random access to
individual events plus local execution state information.Pointer attributes can point
backward and forward, but not to non-local events. Events can be accessed through a
classEvent which provides access to all event attributes. To navigate through the lo-
cal trace, the class also exposes iterator semantics available through simpleprev()
andnext() methods and pointer attributes for more sophisticated tasks, such as call
stack traversal. In this way, it is possible, for example, toreach enclosing enter and exit
events of a given communication event to determine the duration of the entire com-
munication operation. The return values of pointer attributes are always newEvent
(iterator) objects that can be subject to further navigation operations.

To facilitate the cross-process analysis of communicationpatterns,PEARL provides
means to conveniently exchange one or more events between processes. Remote events
received from other processes are represented by a classRemoteEvent, which pro-
vides identical functionality but without iterator semantics. There are generally two
modes of exchanging events: point-to-point and collective. Point-to-point exchange al-
lows a remote event to be created with arguments specifying the source process, a com-
municator, and a message tag. The source process has to invoke a corresponding send



method on the local event object to be transferred. The exchange of multiple events can
be accomplished in one batch by collecting local events in anobject of classEventSet
on the sender’s side and instantiating an object of classRemoteEventSet on the re-
ceiver’s side by supplying message parameters to the constructor. Each event in the set
is identified by a numeric identifier that can be used to assigna role to each member of
the set, for example, to distinguish a particular constituent of a pattern. Collective event
exchange has the form of a reduce operation that identifies the earliest or latest (min
or max) event across a number of processes and instantiates acorresponding remote
event at all participating processes. We are currently investigating methods to optimize
event exchange in cases where the exact number and types of events to be transferred is
difficult to obtain or completely unknown at the receiver’s side.

5 A Framework for Parallel Trace Analysis

The strength ofEARL has been the provision of truly parallel abstractions that allow the
user to access higher-level events, such as messages and collective operations, which
requires the ability to match corresponding events across processes. In the case of our
parallel interface, this is more difficult, since matching incurs costly communication. To
minimize this communication, the intended usage ofPEARL is that of areplay-based
analysis. The central idea behind replay-based analysis isanalyzing a communication
operation using an operation of the same type. For example, to analyze a point-to-point
message, the related events are exchanged in point-to-point mode. To accomplish this,
the new analysis process traverses local traces in paralleland meets at the synchroniza-
tion points of the target application by replaying the original communication. We are
currently investigating the scalability properties of thereplay in comparison to those of
the target application.

References

1. Nagel, W., Weber, M., Hoppe, H.C., Solchenbach, K.: VAMPIR: Visualization and Analysis
of MPI Resources. Supercomputer63, XII (1996) 69–80

2. Wolf, F., Mohr, B., Dongarra, J., Moore, S.: Efficient Pattern Search in Large Traces through
Successive Refinement. In: Proc. of the European Conferenceon Parallel Computing (Euro-
Par), Pisa, Italy, Springer (2004)

3. Wolf, F., Mohr, B.: EARL - A Programmable and Extensible Toolkit for Analyzing Event
Traces of Message Passing Programs. In: Proc. of the 7th International Conference on High
Performance Computing and Networking Europe (HPCN). Volume 1593 of Lecture Notes in
Computer Science., Amsterdam, The Netherlands, Springer (1999) 503–512

4. Wolf, F., Freitag, F., Mohr, B., Moore, S., Wylie, B.: Large Event Traces in Parallel Perfor-
mance Analysis. In: Proc. of the 8th Workshop ’Parallel Systems and Algorithms’ (PASA).
Lecture Notes in Informatics, Frankfurt/Main, Germany, Gesellschaft für Informatik (2006)


