Support for Collaboration, Visualization, Monitoring
and Debugging of Parallel Applications using Shared
Windows

Daniel Stgdle!, John Markus Bjgrndalen!, and Otto J. Anshus!

Dept. of Computer Science, University of Tromsg, N-9037 Tromsg, Norway
{daniels, johnm, otto}@cs.uit.no

Abstract. Data produced by individual parts of a parallel computation is typi-
cally collected into a data set or stream, and then visualized into one window. We
have developed a system providing each part with one or several visualization
windows. These windows can be simultaneously shared onto many displays, al-
lowing a computation to be visualized at several locations simultaneously, or for
supporting interactive, collaborative visualization. To further support collabora-
tion, the system incorporates support for multiple cursors, allowing researchers
to work simultaneously on visualization tasks on a display wall. We have used
the system in a parallel implementation of Mandelbrot, as well as to share native
windows from non-cluster applications on Mac OS X.

1 Introduction

Current systems for runtime visualization on clusters are not sufficiently flexible to
support collaborative applications [1], and there are no out-of-the-box desktop environ-
ments for display walls that offer multiple cursors [2]. This paper presents a system for
sharing windows with several users, and combines it with support for multiple cursors
to enable collaboration on a wall-sized, high-resolution, tiled display (“display wall”).
The system can share any window from Mac OS X with other computers running Mac
OS X or Linux, and its potential use for visualization, debugging and monitoring is
exemplified by sharing windows visualizing the current state of a parallel Mandelbrot
computation running on a Linux cluster.

We present two scenarios to further motivate the system presented in this paper. In
the first scenario, a group of researchers work on visualizing a set of results on their own
computers. To share their data, they can quickly and simply share their visualization
window with each other or to a display wall. The other users can interact with the
window, modifying the view or change other settings as if the window was local. On
the display wall, several users can interact simultaneously using multiple cursors.

The second scenario concerns runtime inspection of parallel applications. We pro-
pose using shared windows, created by each part of the parallel application, as a means
of visualizing partial results, or as a monitoring or debugging tool. By subscribing to a
shared window, it becomes simple to inspect the progress of a computation, or other-
wise monitor the application. Since shared windows support interaction, the behaviour

exported by the parallel

Cluster running a oried
— application.

____parallel application

' ' mn]] 1. Awindow from each part of
| ‘?r=- ' the parallel application
1 -] running on different cluster
! ! | | nodes is shown on the
| Status ! o - . .
' Compute window | " — =] display wall. This capability
: : /'I J allows for simple and instant
| N&"-"E 1 ! S] visualization of partial results,
H | monitoring or debugging the
' | ' b parallel application.

!
i ; ! Display Wall deskto
:)
!
! (= = I
| ¥ !
1 in \1\) 2. Aroaming user can check
! Subscribe N
| Status ! > ‘ on the status of a running
' Compute winciow to window computation from anywhere,
1 7 by simply subscribing to one
i pode or more shared windows
i
!

Fig. 1. Windows shared by a parallel application are accessed both for collaboration on a display
wall and simple monitoring on a laptop.

of the application can even be changed at runtime. Figure 1 illustrates this scenario, in
both a roaming and collaborative setting.

To meet the demands from the above two scenarios, our system should 1) support
the use of tens of cursors, to accommodate tens of users simultaneously working or
collaborating on a display wall, and 2) support platform independent sharing of win-
dows, in order to facilitate sharing of windows between different window systems and
hardware platforms. Our main contribution with this paper is the novel combination
of window sharing with a system supporting multiple cursors, and the use of shared
windows as a means for instant and simple visualization of partial results, monitor-
ing and debugging of parallel applications running on a cluster. We also evaluate the
performance of the window sharing system.

2 Design and implementation

The window sharing system consists of a server, and clients that connect to the server
over TCP for publishing or subscribing to shared windows. The server supports net-
work discovery using multicast, allowing both publishers and subscribers to discover
the server on a LAN.

The current implementation lets a client on Mac OS X publish native Mac OS X
windows (with no changes to application code) and subscribe to shared windows, while
the Linux client only supports subscribing to shared windows. Additionally, an imple-
mentation of a parallel solver for the Mandelbrot set running on Linux was modified
to share a window containing the current progress of the computation. Parallel appli-
cations wanting to leverage shared windows in this way, must be modified to export
windows containing the desired information.

To achieve platform independence, windows are shared by sharing their pixel rep-
resentation, as opposed to drawing operations like “fill rectangle” or “draw line.” On
Mac OS X, a window’s contents are polled periodically (30 times per second), while

contents from the Mandelbrot window are sent to subscribers only when part of it is
actually updated.

Support for multiple cursors was added to Window Maker!, a window manager for
the X Window System. A separate thread receives input events from the network over
a number of TCP sockets, which are generated by users wanting to interact with the
display wall. Multiple cursors are emulated by time-sharing the system cursor, provid-
ing a number of “virtual” cursors in its place. When a user clicks the mouse button, the
system cursor is moved to the position of that user’s virtual cursor, and a mouse click
event is posted. The virtual cursors are distinguished by giving them different colors.

3 Experiments

We have evaluated the performance of the window sharing system by sharing a single
window from a PowerMac Dual-G5 @ 2.5 GHz, 4GB of RAM running Mac OS X
10.4.2. The subscribers ran on a 28-node cluster, each node equipped with Intel P4
EMT-64 @ 3.2 GHz processor, 2GB of RAM, with hyperthreading enabled and running
Rocks 3.32. The interconnect was a switched, gigabit Ethernet. The shared window was
sized at 508x519 pixels in 32-bit color, and contained a constantly-moving image.

The Mac OS X publisher was benchmarked with up to 28 simultaneous subscribers,
with each subscriber running on different nodes in the display wall cluster. Perfor-
mance seen by each subscriber decreased linearly with the number of subscribers, from
28 frames per second (fps) with one subscriber, to 3-4 fps with 28 subscribers. The
publisher’s bandwidth and CPU consumption increased linearly. The bandwidth usage
maxed out at about 65 MB/s with 10 subscribers, while CPU usage went from 45%
with one subscriber, to about 80% with 16 subscribers (max CPU load is 200%). After
this, additional subscribers incurred little additional load, as the network was already
saturated.

We also measured the impact of integrating shared windows with the Mandelbrot
application. With one subscriber for each window shared by each part of the application,
we could only measure a very small impact on the running time (less than one second).
The key difference between the Mandelbrot publisher and the Mac OS X publisher, is
that each part of the Mandelbrot application knows when it updates a window, whereas
the Mac OS X publisher must poll for updates. Each part of the Mandelbrot computation
updates the window 10 times, hence requires only 10 updates.

4 Related work

VNC [3] allows one to share an entire desktop, with many free implementations avail-
able, including some that allow sharing only regions of the desktop. Recently, Shared-
AppVNC [4] was made available, which integrates work derived from our window shar-
ing prototype with VNC. Microsoft’s Messenger and their older NetMeeting software
support application sharing [5], but only work between computers running Windows.

! http://www.windowmaker.org/
% http://www.rocksclusters.org/

For the X Window System, there are many application-sharing solutions, with XTV [6]
being one example. WinCuts [7] can support window sharing on Windows, but does not
support interaction, and lacks in performance (one update per second).

Time-sharing the system cursor was introduced in [8], where a multi-cursor window
manager similar to our own is presented. Their implementation is limited in that it
supports at most seven cursors. Our implementation handles input focus differerently,
does not impose any limitations on the number of cursors, and does not require events
to pass through the X server more than once.

5 Conclusion

A system supporting shared windows and multiple cursors has been presented. It can
support tens of users simultaneously collaborating on a display wall, interacting with
native and shared windows. An implementation sharing windows on Mac OS X demon-
strates this.

Sharing windows can be a powerful way for simple and instant runtime visualiza-
tion, monitoring and debugging of parallel applications, exemplified by a parallel solver
for the Mandelbrot set. Sharing a window from a parallel application for this purpose
incurs very little additional load, and hardly affected the overall running time of the
solver. The Mac OS X implementation fared much worse, due to its need for polling
windows 30 times per second for updates.

Acknowledgements

Thanks to Vera Gobel, Espen Skjelnes Johnsen, Tore Larsen, Kai Li and Grant Wallace for their
discussions, suggestions, help and support. This work has been supported by the NFR funded
project No. 159936/V30, SHARE - A Distributed Shared Virtual Desktop for Simple, Scalable
and Robust Resource Sharing across Computer, Storage and Display Devices.

References

1. A. Chan, W. Gropp, and E. Lusk. = MPE: MPI Parallel Environment. http://www-
unix.mcs.anl.gov/perfvis/software/MPE/index.htm.

2. R. E. Faith and K. E. Martin. Xdmx: Distributed, multi-head X. http://dmx.sourceforge.net/.

3. T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper. Virtual Network Computing.
IEEE Internet Computing, 2(1), January 1998.

4. G. Wallace. SharedAppVNC. http://shared-app-vnc.sourceforge.net/.

5. Microsoft Corporation. Netmeeting. http://www.microsoft.com/windows/netmeeting/.

6. H. Abdel-Wahab and M. Feit. XTV: A Framework for Sharing X Window Clients in Remote
Synchrounous Collaboration. IEEE Tricomm, April 1991.

7. D. S. Tan, B. Meyers, and M. Czerwinski. WinCuts: Manipulating arbitrary window regions
for more effective use of screen space. In CHI '04 extended abstracts on Human factors in
computing systems, pages 1525-1528, New York, NY, USA, 2004. ACM Press.

8. G. Wallace, P. Bi, K. Li, and O. Anshus. A MultiCursor X Window Manager Supporting
Control Room Collaboration. Technical Report TR-707-04, Princeton University, Computer
Science, July 2004.

