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Abstract. Performance Tracing has always been challenged by large
amounts of trace data. Software tools for trace analysis and visualization
successfully cope with ever growing trace sizes. Still, human perception
is unable to “scale up” with the amounts of data.
With a new model of trace visualization, we try to provide less data

but additional information resp. more convenient information to human
users. By marking regular repetition patterns and hiding the inner details
less complex visualization can offer better insight. At the same time
irregular sections are revealed which are potentially interesting.
The paper introduces the origin of repetition patterns and outlines the
detection algorithm used. It demonstrates the new visualization scheme
which has also been incorporated into Vampir NG as a prototype. Finally,
it gives an outlook on further development and possible extentions.

1 Performance Tracing

Event tracing is a well-established method for performance analysis of computer
programs, especially in parallel and High Performance computing (HPC). It has
a reputation for producing large amounts of trace data where “large” has always
been defined by the time’s standards.

Many advancements in HPC contributed to that. This includes faster proces-
sors and growing parallelism. Also, more detailed instrumentation and additional
data sources increase trace data volume. Last but not least availability of larger
memory and storage capacities made traces grow larger.

Therefore, trace analysis and visualization has always been a challenging
task on contemporary computers and always will be. The more so as one cannot
require a actual super-computer for analyzing super-computer traces.

But what is the effect from the human users’ perspective? Could screen res-
olution grow with an appropriate rate? Can human perception scale with the
growing amounts of data as well? And is there really more information when
there is simply more data1? The next chapter tries to address those questions.

1 Let “information” be what contributes to the users insight while “data” is just the
byte sequence transporting information.



2

Then, Section 3 will propose a new visualization methodology to provide more

information to the user with less data. The following Section will outline the al-
gorithms for pattern detection. Finally, there is an outlook on improved analysis
methods based on patterns.

2 Data vs. Information of Traces

There are several reasons for growing trace sizes. First, there may be larger
software projects with bigger source codes. Also, it might grow larger due to
optimization and specialization of code. Second, instrumentation and measure-
ment evolve, providing additional data, for example performance counters in
processors, in communication sub-systems and in I/O backends. Third, longer
resp. faster running programs with more and more parallelism will increase the
number of repeated executions of certain program parts.

The former two reasons have only secondary effect on growing trace data
sizes. They will hardly increase it by orders of magnitude. Only the latter is
responsible for traces of tens of gigabytes, today. On average the trace size will
double when iteration count resp. run-time is doubled or when there are twice
as many parallel processes.

In terms of information to the user the same situation looks different. As-
sumed it is appropriately described as “sequence A = (a1, a2, . . .) is repeated n

times”. From this point of view the statement “sequence A is repeated k = 2n

times” carries about the same amount of information but not twice as much.
There is some additional information concerning the single iterations, how-

ever. First, it is the regular standard behavior of related iterations. Most likely
this is independent of iteration count. Second, there are outliers and abnormal
cases differing from regular behavior.

This additional information is not accessible to the human user by pristine
visualization. Rather sooner than later human perception will be overcharged by
too much data. The aspect of regular or irregular behavior is in fact hidden.

Therefore, we want to propose a new scheme of visualization that reduces
the amount of data in favor of real information perceivable by human users.
Nevertheless, all familiar information and data will still be available through
interactive control.

3 Visualization of Repetition Patterns

The new visualization approach focuses on Process Timeline Diagrams like found
in the Vampir NG [3] tool, for example. For each and every function call a single
box representing a state of execution, compare Figure 1a. Now, in a simplified
Process Timeline Diagram all regular repetition patterns of arbitrary size and
nesting depth are replaced with a single marked box. See Figure 1b for an exam-
ple. Those boxes indicate a region with regular behavior, inner details are not
shown.
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Fig. 1. Plain Process Timeline Diagram of some nested function calls (a), left, and
simplified Pattern Diagram of the same situation (b), right. The box pattern

3 states that there is a repetition of regular call sequences inside.

This display hides too much information. Therefore, patterns can be de-
composed interactively. This replaces every instance of a pattern by its direct
sub-patterns. See Figure 2 for an example. All sub-patterns can be decomposed
as well until the fully decomposed view is identical to the traditional one (Fig-
ure 1a). In addition to decomposing patterns there is an info dialog available to
provide the pattern structure as well as statistics about all occurrences.

pattern 2pattern 2pattern 2
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Fig. 2. Pattern Diagram after pattern 3 in Figure 1b has been decomposed. The fourth
call to foo is not covered by the pattern because there is one differing sub-call.

This view allows an easy distinction of regular an irregular parts of a trace.
For example, the fourth iteration in Figure 2 is not covered by a pattern because
there is a small structural difference. In general such important differences can
hardly be perceived directly from a traditional timeline view. Either, because
there are too many details to figure out, or because differences are not visible at
all when there are more details than actual screen pixels.

4 Pattern Detection

The pattern detection algorithm is based on Compressed Complete Call Graphs

(cCCGs) [1]. From this general purpose data structure it derives the so called
Pattern Graph [2]. The cCCG references all call sequences that are regarded
equal with respect to call structure and temporal behavior to a single represen-
tation. This allows notable data compression. See [1] for more details.

Now, the Pattern Graph summarizes this even more, neglecting any run-time
information. Within all nodes it searches for repetition patterns of arbitrary
length. To reduce computational overhead it regards only consecutive repetition
patterns, but no patterns that appear isolated in multiple places. However, re-
peated patterns that appear in multiple places are identified as the same pattern.
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With this constraint the complexity for pattern search is bounded by O(n·m)
[2] where n is the number of nodes in the cCCG and m is the maximum number of
regular child nodes per graph node. Because the cCCG’s compression parameters
are not important, here, the maximum compressed cCCG can be used, i.e. that
with minimum node count n.

Pattern detection can also be performed in parallel such that every trace
process/thread is handled separately. A final interchange of pattern information
and renaming of local pattern identifiers is sufficient to produce global pattern
information. Furthermore, it is possible to store pattern information persistently
and reread it instead of re-computing it multiple times.

5 Outlook

The pattern detection and visualization outlined above have been incorporated
into the Vampir NG tool as a prototype [2] see Figure 3.

Fig. 3. Example screen shot of Vampir NG’s [3] process timeline diagram in traditional
way (a), left, and with pattern information (b), right.

So far, pattern detection and visualization relies on strutural identical pat-
terns. Prospectively, pattern matching could accept certain variation. e.g. regard
loops as equal if they have identical inner structure but different iteration counts.
Furthermore, there should be automatic evaluation of the temporal behavior of
all occurrences of the same pattern. Again, outliers from the standard behavior
should be highlighted. Finally, the rendering of timeline diagrams with pattern
information, which was derived from the traditional scheme, might be redesigned.
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