
Dr.-Ing. Michael Klemm

Software and Services Group

Intel Corporation

(michael.Klemm@intel.com)

Debugging on the
Intel® Xeon Phi™ Coprocessor

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Performance tests and ratings are measured using specific computer systems and/or components
and reflect the approximate performance of Intel products as measured by those tests. Any
difference in system hardware or software design or configuration may affect actual performance.
Buyers should consult other sources of information to evaluate the performance of systems or
components they are considering purchasing. For more information on performance tests and on
the performance of Intel products, reference www.intel.com/software/products.

Copyright © 2013, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, Phi,
VTune, and Cilk are trademarks of Intel Corporation in the U.S. and other countries. *Other names
and brands may be claimed as the property of others.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Intel Confidential – NDA Presentation

2

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Agenda

Overview

Installation

Command Line Debugger

• Debugging a Coprocessor Native Application

• Debugging Offloaded Code

• The GNU* Project Debugger (GDB*) & Intel® Debugger (IDB)

Eclipse* CDT Integration

GDB* Enabling

3

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Motivation

Intel® Xeon Phi™ Coprocessor relies on new programming
models and debug communication models.

Intel® Debugger provides cross-debug solution to debug on
Intel® Xeon Phi™ Coprocessor based coprocessor cards

4

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Debugger for
Intel® Xeon Phi™ Coprocessor

Command Line Debugger
Eclipse* IDE Integration
Linux* hosted
C/C++ & Fortran
Offload and Native Code Debug

5

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Debugger for Intel® Xeon Phi™ Coprocessor
Basic Setup

Debug agent

Offload

Debugger

6

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Debugger Installation
Intel® Debugger for Intel® Xeon Phi™ Coprocessor is part of the Intel® Composer
XE for Linux* Including Intel® Xeon Phi™ Coprocessor.

Gets installed automatically running the install.sh install script from the
l_ccompxe_2013.0.xxx.tgz package.

Setting up the Intel® C++ Compiler environment via

$ source /opt/intel/composer_xe_2013/bin/compilervars.sh

intel64

will also set up the environment for the Intel® Debugger.

Automatically installed as part of Intel® Composer XE
Integration into Eclipse* CDT covered later

7

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Agenda

Overview

Installation

Command Line Debugger

• Debugging a Coprocessor Native Application

• Debugging Offloaded Code

• The GNU* Project Debugger (GDB*) & Intel® Debugger (IDB)

Eclipse* CDT Integration

GDB* Enabling

8

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Command Line Debugging
Debugger Executables

After installation is complete you will find the debugger
executables at

/opt/intel/composer_xe_2013/bin/intel64_mic

idbc is the command line debugger driver for the host.

idbc_mic is the command line debugger driver for the Intel®

Xeon Phi™ Coprocessor based card.

idbc and idbc_mic are the debugger executables

9

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Launch the target debugger by using the following command:

idbc_mic -tco -rconnect=tcpip:coprocessor-ip-address:port

or

idbc_mic –tco –rconnect=tcpip:mic[n]:port

when using the default IP addresses.

The default port number is 2000.

For example, enter

idbc_mic -tco -rconnect=tcpip:mic0:2000

for the first Intel® Xeon Phi™ Coprocessor device using the default port.

Launching the Debugger

10

idbc / symbol info idbserver / executable & shared objects

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Starting Application from within Debugger

If you are debugging an application to run natively on Intel® Xeon
Phi™ Coprocessor you can start the application using the debugger:

1. Specify the remote executable file:
(idb) idb file-remote target-bin-path

2. Specify the file containing debug info on host:
(idb) file host-bin-path

3. After setting breakpoints and whatever else you want to do before
starting the application, start the
Application to reach breakpoint:
(idb)run

Note:
The application has to be uploaded to the coprocessor outside of the
debugger prior to launching it.

11

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Attaching to Application with Debugger

Attach

If you are debugging an application on the coprocessor target, run the application and attach the debugger to
it:

Enter the following command:

(idb) attach <pid> <image_file>

<pid> The pid of the process to attach to.
<image_file> The image path and file name on the host

Target Process List

To identify the process to attach to the following command can be used

(idb) idb show process-list ["proc-name"]

Semantics:
idb show process-list prints all processes running on the target and variable $lsproc will hold the number
of processes found as a negative number, i.e. If there are 5 processes running, $lsproc will be -5

idb show process-list "proc-name" will get the process list and search for a process named proc-name. If
found, $lsproc will contain the process id or 0 if no applicable process has been found.

12

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Native Debug Considerations (1)

1. New command:

Setting remote working directory on the coprocessor:

(idb) idb remote-working-dir

2. MPSS supports standard Linux user account configurations

idbserver_mic and the native application to be debugged need
to be launched as the same user.

This means both the native app on the target and idc_mic need
to either be launched as root or with a user account of the same
name.

13

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

When debugging native coprocessor applications on the command line, the shared
library libmyodbl-service.so, needs to be uploaded manually moving forward.

Solution:

Create an overlay, so the file is uploaded at boot time. Follow the instructions on
how to use overlays in the MPSS readme.txt.

Specific Steps:

a. Target: Create /etc/sysconfig/mic/conf.d/myo.conf containing

MYO download files

Overlay / /opt/intel/mic/myo/config/myo.filelist

b. Host: Create /opt/intel/mic/myo/config/myo.filelist containing

dir /lib64 755 0 0

file /lib64/libmyodbl-service.so

opt/intel/mic/myo/lib/libmyodbl-service.so 755 0 0

14

Intel Confidential – NDA presentation

Native Debug Considerations (2)

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Using an Endless Worker Loop (1)

It may be useful to use an endless worker loop to be able to attach to an
application at a defined location.

To ensure the endless worker loop in your native or coprocessor-side application
is executed even with aggressive compiler optimizations enabled it is
recommended to implement it as follows:

void attach_idb() {

volatile int loop = 1;

do {

volatile int a = 1;

} while (loop);

}

Call this function at a location suitable for attaching the debugger.

15

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Using an Endless Worker Loop (2)
If you added an endless worker loop to your offload code, the following method
may be used to start debugging just outside of the loop.

1. Using the following commands:

(idb) list <filename>

2. Now you have a line number for volatile int a =1. Set a breakpoint

on that line and continue.

(idb) p loop=0

(idb) break <line number>

3. Continue

(idb) continue

You can identify the source line directly after the endless worker loop and start
debugging from that source line.

Note: After that, set a breakpoint using the break command at any code line or
address of interest and issue a continue command to run to it.

16

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Shared Object Debugging
Using LD_LIBRARY_PATH

If the target-side application is dynamically linked against shared objects that are not part of
the compiler or driver, and that need LD_LIBRARY_PATH to be set in order to find them,

1. Set a breakpoint before the libraries are loaded.
2. When the debugger stops at that location, use the command
(idb) set environment LD_LIBRARY_PATH path

3. Do the same for other environment variables that the application might need.

Specifying Additional Symbol Info Search Paths

To tell the debugger where to search for the debug information specific to your application:

(idb) set solib-search-path path[:path]

e.g.
(idb) set solib-search-path /usr/linux-k1om-4.7/linux-k1om/lib64/lib:/usr/linux-

k1om-4.7/x86_64-k1om-linux/lib64

To ensure correct target Linux* runtime library pick-up by the debugger

(idb) show solib-search-path

Provides listing of all directories in search path

17

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Agenda

Overview

Installation

Command Line Debugger

• Debugging a Coprocessor Native Application

• Debugging Offloaded Code

• The GNU* Project Debugger (GDB*) & Intel® Debugger (IDB)

Eclipse* CDT Integration

GDB* Enabling

18

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Simultaneous Debug Host and Coprocessor (1)

No Debug Synchronization between Host and Coprocessor

For command line debug there is no active synchronization between host
and coprocessor debugged code.

1. Set your host side breakpoint where a target workload already exists.

2. After attach with idbc_mic, set a breakpoint there where you want to
start debugging.

If you are debugging a heterogeneous application and intend to debug
host and coprocessor code simultaneously,

run idbc for the host

run idbc_mic for the coprocessor targeted codebase.

 Two terminal windows or for a remote debug setup two ssh sessions
will be necessary.

19

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Host Debug:
idbc <application>

Start the app on the host side through the debugger and stopped at a breakpoint
somewhere after creating target offload process.

Target Debug:

idbc_mic –tco –rconnect=tcpip:<cardip>:<port>

idbc_mic –tco –rconnect=tcpip:mic[n]:<port>

(idb) attach <pid> /opt/intel/composerxe/lib/mic/offload_main

The actual location of the offload_main binary may differ depending on the tools

version used.

Simultaneous Debug Host and Coprocessor (2)

20

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Target Debug:

IDB will attach to the process and read debug info from debuggee process and
loaded libraries. If the libraries are located at a different location than at compile
time, you can set up library search paths using the debugger command.

(idb) set solib-search-path <path-to-so>[:<path-to-so>]

Note:

The location the debugger stops on the target is random, typically in the scheduler
or libpthread:
• set host side breakpoint where target workload already exists
• after attach with idbc_mic set a breakpoint there where you want to start

debugging.

• You may want to consider introducing infinite worker loop in offload
code do define connection point.

Simultaneous Debug Host and Coprocessor (3)

21

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Agenda

Overview

Installation

Command Line Debugger

• Debugging a Coprocessor Native Application

• Debugging Offloaded Code

• The GNU* Project Debugger (GDB*) & Intel® Debugger (IDB)

Eclipse* CDT Integration

GDB* Enabling

22

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Debugger (IDB) and
The GNU* Project Debugger (GDB*)

IDB is the Intel debugger. It has a GDB-style command line interface

Basic commands and behavior are the same as GDB.

In addition it features,

• Enhanced Fortran 90/95 support

• Support for dynamic arrays in Fortran

• Integration into Eclipse* CDT offers enhanced threading support

• Enhanced Parallelism and Threading Support (next slide)

Debugger Online Help:
http://software.intel.com/sites/products/documentation/hpc/comp
oserxe/en-us/2011Update/idbxe/linux/index.htm

23

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Debugger unique commands

Start with “idb”

Cover thread specific run-control

• Define thread groups, freeze, thaw

Intel® Cilk™ Plus and OpenMP execution serialization

Data sharing event detection

Thread filtering

OpenMP* thread info:
• Locks, barriers, teams, tasks, thread tree

idb show process-list “<image-name>”
• Displays process ID of image name.

IDB provides advanced
thread run-control and awareness

24

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Agenda

Overview

Installation

Command Line Debugger

• Debugging a Coprocessor Native Application

• Debugging Offloaded Code

• The GNU* Project Debugger (GDB*) & Intel® Debugger (IDB)

Eclipse* CDT Integration

GDB* Enabling

25

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Debugging Heterogeneous Applications
in Eclipse* IDE integration

#pragma offload target (mic)

#pragma omp parallel for reduction(+:pi)
for (i=0; i<count; i++)

{
float t = (float)((i+0.5)/count);
pi += 4.0/(1.0+t*t);

}
pi /= count

• Offload process gets launched on
Intel® Xeon Phi™ Coprocessor. This
process executes offloaded code
segment.
• Debugger remotely attaches to
offload process offload_main

• Automatic debug agent
download on offload
• Protocol: Virtual TCP/IP
• Automatic attach to offload
process

• Once launching host process is
finished, offload process is
automatically removed on
coprocessor.
• Debugger captures process
removal and detaches.

main()
{

}

26

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Debugging Intel® Xeon Phi™ Coprocessor
applications with Eclipse* CDT

• Eclipse* IDE integrated debugger with integrated thread view and source view
for coprocessor code execution.
• Multi-card offload debug. Single card offload and direct/native mode support.

27

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Single Eclipse* GUI based Debug Solution

Standard Eclipse IDE Debugger with integrated Cross-Debug for
heterogeneous applications

Install Integration Add-on for Eclipse* >

28

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Adding the Compiler and Debugger to
Eclipse*
1. Start Eclipse.

2. Select or create a workspace. For example, select or create a makefile
project with already existing code.

3. Select Help > Install New Software.

4. Next to the Work with field, Click the Add button.
The Add Site dialog opens.

5. Click the Local button and browse to the appropriate Intel CDT integration
directory:

install_dir/eclipse_support/cdt8.0/eclipse

6. Click OK.

7. Make sure Group items by category is not checked.

8. Select the options beginning with Intel, including the Intel Debugger (IDB),
should you choose to use it, and
click Next.

29

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Start Offload Debug Session in Eclipse* IDE

Launch Eclipse*: $./eclipse &

30

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Define Debug Configuration – Eclipse* Style

1. Select Run > Debug Configurations....
2. Select the debug configuration type, for example, C/C++ Application.
3. Click the New button.
4. Enter a name for your configuration.

31

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Define Debug Configuration – Eclipse* Style

1. Switch to the Debugger tab.

2. Under Debugger Options select the Main tab. Make sure that the path to
the debugger executable is specified correctly in the field IDB Debugger.

3. By default, IDB debugger contains the correct start script idb_mpm.

32

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Select Offload Process Launcher for
Debug Session

1. On the Main tab locate the process launcher information and click Select
other....

2. The Select Preferred Launcher dialog box appears.
3. Check the Use configuration specific settings checkbox.
4. Select IDB-MIC (DSF) Create Process Launcher.

33

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Select Application to Debug

At the Main tab of the Debug Configurations dialog, enter the path to
the application you wish to debug in the field C/C++ Application.

34

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Select Application to Debug

At the Main tab of the Debug Configurations dialog, enter the path to
the application you wish to debug in the field C/C++ Application.

35

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Add Search Directories for Shared Objects

36

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Debug Offload Code from within
Eclipse* Debug Perspective

Select Run > Debug from the menu bar or click the Debug button

37

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

View Offload Threads

38

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Debugging Only on the Coprocessor

1. Select Run > Debug Configurations....

2. Select the debug configuration type C/C++ Attach to Application.

3. Click the New button.

4. Enter a name for your configuration.

5. On the Main tab locate the process launcher information and click Select other....

The Select Preferred Launcher dialog box appears.

6. Check the Use configuration specific settings checkbox.

7. Select IDB-MIC (DSF) Attach to Process Launcher.

8. Click OK.

The Select Preferred Launcher dialog box is closed.

9. Switch to the Debugger tab.

10. Under Options check the Attach to Intel® Xeon Phi™ checkbox.

11. Choose the desired coprocessor from the Card pull down menu.

12. At File Location browse for the symbol file related to the process you want to attach to.

13. Click Debug.

The debugger starts and the Select a Process dialog box opens displaying a list of running
processes.

14. Select the process you want to attach to and click OK.

39

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Agenda

Overview

Installation

Command Line Debugger

• Debugging a Coprocessor Native Application

• Debugging Offloaded Code

• The GNU* Project Debugger (GDB*) & Intel® Debugger (IDB)

Eclipse* CDT Integration

GDB* Enabling

40

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

The GNU* Project Debugger and
Intel® Xeon Phi™ Coprocessor

GDB* native-only debugger released.

(http://software.intel.com/en-us/forums/showthread.php?t=105443)

41

Intel Confidential – NDA presentation

http://software.intel.com/en-us/forums/showthread.php?t=105443

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

The GNU* Project Debugger and
Intel® Xeon Phi™ Coprocessor

Modified and rebuilt GDB* 7.4

• Unpack

tar xzf gdb-intel-mic-2.1.xxxx.tgz

• Copy to target

export CARD=172.xxx.x.xxx

scp gdb root@$CARD:/usr/bin

• Use GDB* locally in target processor terminal to attach and
launch native process as you would on standard Linux*

• Sources to rebuild and modify GDB* and patches are provided.

42

Intel Confidential – NDA presentation

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

More questions?

43

Intel Confidential – NDA presentation

